Body Temperatures, Heart and Breathing Rate, and Evaporative Water Loss in Hummingbirds
1964; University of Chicago Press; Volume: 37; Issue: 2 Linguagem: Inglês
10.1086/physzool.37.2.30152332
ISSN1937-4267
Autores Tópico(s)Avian ecology and behavior
ResumoPrevious articleNext article No AccessBody Temperatures, Heart and Breathing Rate, and Evaporative Water Loss in HummingbirdsRobert C. LasiewskiRobert C. LasiewskiPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 37, Number 2Apr., 1964 Article DOIhttps://doi.org/10.1086/physzool.37.2.30152332 Views: 32Total views on this site Citations: 86Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1964 University of ChicagoPDF download Crossref reports the following articles citing this article:Harvey B Lillywhite Vertebrate Respiration and Circulation in Extreme Conditions, (Jul 2021): 1–13.https://doi.org/10.1002/9780470015902.a0029373Diego Ocampo, Gilbert Barrantes, J. Albert C. Uy Morphological adaptations for relatively larger brains in hummingbird skulls, Ecology and Evolution 8, no.2121 (Sep 2018): 10482–10488.https://doi.org/10.1002/ece3.4513Alexander M. Myrka, Kenneth C. Welch Evidence of high transport and phosphorylation capacity for both glucose and fructose in the ruby-throated hummingbird (Archilochus colubris), Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 224 (Oct 2018): 253–261.https://doi.org/10.1016/j.cbpb.2017.10.003Kenneth C. Welch, Alexander M. Myrka, Raafay Syed Ali, Morag F. Dick The Metabolic Flexibility of Hovering Vertebrate Nectarivores, Physiology 33, no.22 (Mar 2018): 127–137.https://doi.org/10.1152/physiol.00001.2018Donald R. Powers, Kathleen M. Langland, Susan M. Wethington, Sean D. Powers, Catherine H. Graham, Bret W. Tobalske Hovering in the heat: effects of environmental temperature on heat regulation in foraging hummingbirds, Royal Society Open Science 4, no.1212 (Dec 2017): 171056.https://doi.org/10.1098/rsos.171056Sameera Dasari, Corey Hill, Allan T. Gulledge A unifying hypothesis for M1 muscarinic receptor signalling in pyramidal neurons, The Journal of Physiology 595, no.55 (Dec 2016): 1711–1723.https://doi.org/10.1113/JP273627Thomas Ruf, Fritz Geiser Daily torpor and hibernation in birds and mammals, Biological Reviews 90, no.33 (Aug 2014): 891–926.https://doi.org/10.1111/brv.12137J. Barske, L. Fusani, M. Wikelski, N. Y. Feng, M. Santos, B. A. Schlinger Energetics of the acrobatic courtship in male golden-collared manakins ( Manacus vitellinus ), Proceedings of the Royal Society B: Biological Sciences 281, no.17761776 (Feb 2014): 20132482.https://doi.org/10.1098/rspb.2013.2482P. J. Reiser, K. C. Welch, R. K. Suarez, D. L. Altshuler Very low force-generating ability and unusually high temperature dependency in hummingbird flight muscle fibers, Journal of Experimental Biology 216, no.1212 (Apr 2013): 2247–2256.https://doi.org/10.1242/jeb.068825Donald R. Powers, Philip W. Getsinger, Bret W. Tobalske, Susan M. Wethington, Sean D. Powers, Douglas R. Warrick Respiratory evaporative water loss during hovering and forward flight in hummingbirds, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 161, no.22 (Feb 2012): 279–285.https://doi.org/10.1016/j.cbpa.2011.11.008Dennis Evangelista, María José Fernández, Madalyn S. Berns, Aaron Hoover, and Robert Dudley Hovering Energetics and Thermal Balance in Anna's Hummingbirds (Calypte anna) D. Evangelista, M. J. Fernández, M. S. Berns, A. Hoover, and R. Dudley, Physiological and Biochemical Zoology 83, no.33 (Jul 2015): 406–413.https://doi.org/10.1086/651460Philip C. Withers, Christine E. Cooper Metabolic Depression: A Historical Perspective, (Sep 2009): 1–23.https://doi.org/10.1007/978-3-642-02421-4_1Raul K. Suarez, Kenneth C. Welch Stoking the Brightest Fires of Life Among Vertebrates, (Jun 2009): 381–394.https://doi.org/10.1007/978-3-540-93985-6_15J.T. Lumeij Birds, (Jan 2009): 247–271.https://doi.org/10.1016/B978-0-7020-2968-4.00028-9C. E. Cooper, B. M. McAllan, F. Geiser Effect of torpor on the water economy of an arid-zone marsupial, the stripe-faced dunnart (Sminthopsis macroura), Journal of Comparative Physiology B 175, no.55 (Apr 2005): 323–328.https://doi.org/10.1007/s00360-005-0488-yFrançois Criscuolo, Maria del Mar Gonzalez-Barroso, Yvon Le Maho, Daniel Ricquier, Frederic Bouillaud Avian uncoupling protein expressed in yeast mitochondria prevents endogenous free radical damage, Proceedings of the Royal Society B: Biological Sciences 272, no.15651565 (Apr 2005): 803–810.https://doi.org/10.1098/rspb.2004.3044J.T. Lumeij Vogels, (Jan 2005): 297–325.https://doi.org/10.1007/978-90-313-9460-9_28Geoffrey P. Dobson Organ arrest, protection and preservation: natural hibernation to cardiac surgery, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 139, no.33 (Nov 2004): 469–485.https://doi.org/10.1016/j.cbpc.2004.06.002Todd J. McWhorter, Carlos Martínez del Rio, Berry Pinshow, Lizanne Roxburgh Renal function in Palestine sunbirds: elimination of excess water does not constrain energy intake, Journal of Experimental Biology 207, no.1919 (Sep 2004): 3391–3398.https://doi.org/10.1242/jeb.01169P. A. Fleming, B. Hartman Bakken, C. N. Lotz, S. W. Nicolson Concentration and temperature effects on sugar intake and preferences in a sunbird and a hummingbird, Functional Ecology 18, no.22 (Apr 2004): 223–232.https://doi.org/10.1111/j.0269-8463.2004.00818.xP. A. Fleming Osmoregulation in an avian nectarivore, the whitebellied sunbird Nectarinia talatala: response to extremes of diet concentration, Journal of Experimental Biology 206, no.1111 (Jun 2003): 1845–1854.https://doi.org/10.1242/jeb.00351José Guilherme Chaui-Berlinck, José Eduardo P.W Bicudo, Luiz Henrique A Monteiro, Carlos Arturo Navas Oscillatory pattern in oxygen consumption of Hummingbirds, Journal of Thermal Biology 27, no.55 (Oct 2002): 371–379.https://doi.org/10.1016/S0306-4565(02)00005-0Douglas L. Altshuler, Robert Dudley The ecological and evolutionary interface of hummingbird flight physiology, Journal of Experimental Biology 205, no.1616 (Aug 2002): 2325–2336.https://doi.org/10.1242/jeb.205.16.2325J. N. MAINA Some recent advances on the study and understanding of the functional design of the avian lung: morphological and morphometric perspectives, Biological Reviews 77, no.11 (Mar 2007): 97–152.https://doi.org/10.1017/S1464793101005838Andrew E. McKechnie, Barry G. Lovegrove , The Condor 104, no.44 ( 2002): 705.https://doi.org/10.1093/condor/104.4.705Carlos Martínez del Rio, Jorge E. Schondube, Todd J. McWhorter, L. Gerardo Herrera Intake Responses in Nectar Feeding Birds: Digestive and Metabolic Causes, Osmoregulatory Consequences, and Coevolutionary Effects, American Zoologist 41, no.44 (Aug 2001): 902–915.https://doi.org/10.1093/icb/41.4.902Carlos Martínez del Rio, Jorge E. Schondube, Todd J. McWhorter, L. Gerardo Herrera Intake Responses in Nectar Feeding Birds: Digestive and Metabolic Causes, Osmoregulatory Consequences, and Coevolutionary Effects1, American Zoologist 41, no.44 (Aug 2001): 902–915.https://doi.org/10.1668/0003-1569(2001)041[0902:IRINFB]2.0.CO;2Douglas L. Altshuler, Peng Chai, Jeff S. P. Chen Hovering Performance of Hummingbirds in Hyperoxic Gas Mixtures, Journal of Experimental Biology 204, no.1111 (Jun 2001): 2021–2027.https://doi.org/10.1242/jeb.204.11.2021CLAUDIA R. VIANNA, THILO HAGEN, CHEN-YU ZHANG, ERIC BACHMAN, OLIVIER BOSS, BALAZS GEREBEN, ANSELMO S. MORISCOT, BRADFORD B. LOWELL, JOSÉ EDUARDO P. W. BICUDO, ANTONIO C. BIANCO Cloning and functional characterization of an uncoupling protein homolog in hummingbirds, Physiological Genomics 5, no.33 (Apr 2001): 137–145.https://doi.org/10.1152/physiolgenomics.2001.5.3.137G. Casotti, C.A. Beuchat, E.J. Braun Morphology of the kidney in a nectarivorous bird, the Anna's hummingbird Calypte anna, Journal of Zoology 244, no.22 (Feb 2006): 175–184.https://doi.org/10.1111/j.1469-7998.1998.tb00023.xJoseph B. Williams A Phylogenetic Perspective of Evaporative Water Loss in Birds, The Auk 113, no.22 (Apr 1996): 457–472.https://doi.org/10.2307/4088912Randi Eidsmo Reinertsen Physiological and Ecological Aspects of Hypothermia, (Jan 1996): 125–157.https://doi.org/10.1007/978-1-4613-0425-8_5R. K. Suarez Hummingbird flight: Sustaining the highest mass-specific metabolic rates among vertebrates, Experientia 48, no.66 (Jun 1992): 565–570.https://doi.org/10.1007/BF01920240Dennis Heinemann Resource use, energetic profitability, and behavioral decisions in migrant rufous hummingbirds, Oecologia 90, no.11 (Apr 1992): 137–149.https://doi.org/10.1007/BF00317819R Prinzinger, A Preßmar, E Schleucher Body temperature in birds, Comparative Biochemistry and Physiology Part A: Physiology 99, no.44 (Jan 1991): 499–506.https://doi.org/10.1016/0300-9629(91)90122-S Carol A. Beuchat , William A. Calder III , and Eldon J. Braun The Integration of Osmoregulation and Energy Balance in Hummingbirds, Physiological Zoology 63, no.66 (Sep 2015): 1059–1081.https://doi.org/10.1086/physzool.63.6.30152633Theresa L. Bucher, Mark A. Chappell Energy Metabolism and Patterns of Ventilation in Euthermic and Torpid Hummingbirds, (Jan 1989): 187–195.https://doi.org/10.1007/978-1-4757-0031-2_20Deborah A. Burgoon, Delbert L. Kilgore, Philip J. Motta Brain temperature in the calliope hummingbird (Stellula calliope): a species lacking arete mirabile ophthalmicum, Journal of Comparative Physiology B 157, no.55 (Jan 1987): 583–588.https://doi.org/10.1007/BF00700978Andreas Bertsch Foraging in male bumblebees (Bombus lucorum L.): maximizing energy or minimizing water load?, Oecologia 62, no.33 (Jun 1984): 325–336.https://doi.org/10.1007/BF00384264William R. Dawson Physiological studies of desert birds: present and future considerations, Journal of Arid Environments 7, no.22 (Jun 1984): 133–155.https://doi.org/10.1016/S0140-1963(18)31380-6Randi Eidsmo Reinertsen Nocturnal hypothermia and its energetic significance for small birds living in the Arctic and subarctic regions. A review, Polar Research 1, no.33 (Dec 2016): 269–284.https://doi.org/10.3402/polar.v1i3.6994BRIAN K. MCNAB Energetics, body size, and the limits to endothermy, Journal of Zoology 199, no.11 (Aug 2009): 1–29.https://doi.org/10.1111/j.1469-7998.1983.tb06114.xWilliam R Dawson Evaporative losses of water by birds, Comparative Biochemistry and Physiology Part A: Physiology 71, no.44 (Jan 1982): 495–509.https://doi.org/10.1016/0300-9629(82)90198-0Roland Prinzinger, Roland Göppel, Axel Lorenz Der Torpor beim RotrückenmausvogelColius castanotus, Journal of Ornithology 122, no.44 (Oct 1981): 379–392.https://doi.org/10.1007/BF01652926Jürgen Aschoff Der Tagesgang der Körpertemperatur von Vögeln als Funktion des Körpergewichtes, Journal für Ornithologie 122, no.22 (Apr 1981): 129–151.https://doi.org/10.1007/BF01822052R Prinzinger, R Göppel, A Lorenz, E Kulzer Body temperature and metabolism in the red-backed mousebird (Colius castanotus) during fasting and torpor, Comparative Biochemistry and Physiology Part A: Physiology 69, no.44 (Jan 1981): 689–692.https://doi.org/10.1016/0300-9629(81)90157-2William A. Calder On the temperature-dependency of optimal nectar concentrations for birds, Journal of Theoretical Biology 78, no.22 (May 1979): 185–196.https://doi.org/10.1016/0022-5193(79)90263-7F. Reed Hainsworth, Larry L. Wolf Regulation of Metabolism during Torpor in "Temperate" Zone Hummingbirds, The Auk 95, no.11 (Jan 1978): 197–199.https://doi.org/10.2307/4085519 F. Reed Hainsworth , Brian G. Collins , and Larry L. Wolf The Function of Torpor in Hummingbirds, Physiological Zoology 50, no.33 (Sep 2015): 215–222.https://doi.org/10.1086/physzool.50.3.30155724Herbert Biebach Reduktion des Energiestoffwechsels und der Körpertemperatur hungernder Amseln(Turdus merula), Journal für Ornithologie 118, no.33 (Jul 1977): 294–300.https://doi.org/10.1007/BF01643539 Philip C. Withers Respiration, Metabolism, and Heat Exchange of Euthermic and Torpid Poorwills and Hummingbirds, Physiological Zoology 50, no.11 (Sep 2015): 43–52.https://doi.org/10.1086/physzool.50.1.30155714G. C. Whittow Regulation of Body Temperature, (Jan 1976): 146–173.https://doi.org/10.1007/978-3-642-96274-5_7Edward E. Southwick, David M. Gates Energetics of Occupied Hummingbird Nests, (Jan 1975): 417–430.https://doi.org/10.1007/978-3-642-87810-7_23William A. Calder Factors in the Energy Budget of Mountain Hummingbirds, (Jan 1975): 431–442.https://doi.org/10.1007/978-3-642-87810-7_24William A. Calder, The Thermal and Radiant Environment of a Winter Hummingbird Nest, The Condor 76, no.33 (Oct 1974): 268–273.https://doi.org/10.2307/1366340William A. Calder An estimate of the heat balance of a nesting hummingbird in a chilling climate, Comparative Biochemistry and Physiology Part A: Physiology 46, no.22 (Oct 1973): 291–300.https://doi.org/10.1016/0300-9629(73)90419-2William A. Calder, Joanna Booser Hypothermia of Broad-Tailed Hummingbirds during Incubation in Nature with Ecological Correlations, Science 180, no.40874087 (May 1973): 751–753.https://doi.org/10.1126/science.180.4087.751J. D. Chilgren, J. R. King Thermoregulatory responses of Japanese Quail to various air temperatures and humidities, International Journal of Biometeorology 17, no.11 (Mar 1973): 29–40.https://doi.org/10.1007/BF01553643Yoshika Oniki Some Temperatures of Panamanian Birds, The Condor 74, no.22 (Jul 1972): 209–215.https://doi.org/10.2307/1366290M. Berger, J. S. Hart Die Atmung beim KolibriAmazilia fimbriata w�hrend des Schwirrfluges bei verschiedenen Umgebungstemperaturen, Journal of Comparative Physiology 81, no.44 (Jan 1972): 363–380.https://doi.org/10.1007/BF00697756David R Jones The effect of thermal acclimation on heart rate and oxygen consumption of frogs during submergence, Comparative Biochemistry and Physiology Part A: Physiology 41, no.11 (Jan 1972): 97–104.https://doi.org/10.1016/0300-9629(72)90037-0Robert C. Lasiewski RESPIRATORY FUNCTION IN BIRDS, (Jan 1972): 287–342.https://doi.org/10.1016/B978-0-12-249402-4.50014-0R.H. Drent, B. Stonehouse Thermoregulatory responses of the peruvian penguin, Spheniscus humboldti, Comparative Biochemistry and Physiology Part A: Physiology 40, no.33 (Nov 1971): 689–710.https://doi.org/10.1016/0300-9629(71)90254-4Ralph R. Moldenhauer The effects of temperature on the metabolic rate and evaporative water loss of the sage sparrow Amphispiza belli nevadensis, Comparative Biochemistry and Physiology 36, no.33 (Oct 1970): 579–587.https://doi.org/10.1016/0010-406X(70)91033-9J.Emil Morhardt Heart rates, breathing rates and the effects of atropine and acetylcholine on white-footed mice (Peromyscus sp.) during daily torpor, Comparative Biochemistry and Physiology 33, no.22 (Mar 1970): 441–457.https://doi.org/10.1016/0010-406X(70)90360-9M. Berger, J. S. Hart, O. Z. Roy Respiration, oxygen consumption and heart rate in some birds during rest and flight, Zeitschrift f�r Vergleichende Physiologie 66, no.22 (Jan 1970): 201–214.https://doi.org/10.1007/BF00297779Ray B Owen Heart rate, a measure of metabolism in blue-winged teal, Comparative Biochemistry and Physiology 31, no.33 (Nov 1969): 431–436.https://doi.org/10.1016/0010-406X(69)90024-3J. David Ligon Some Aspects of Temperature Relations in Small Owls, The Auk 86, no.33 (Jul 1969): 458–472.https://doi.org/10.2307/4083408William R. Dawson, Charles D. Fisher Responses to Temperature by the Spotted Nightjar (Eurostopodus guttatus), The Condor 71, no.11 (Jan 1969): 49–53.https://doi.org/10.2307/1366047Eugene C. Crawford,, Robert C. Lasiewski Oxygen Consumption and Respiratory Evaporation of the Emu and Rhea, The Condor 70, no.44 (Oct 1968): 333–339.https://doi.org/10.2307/1365927William A. Calder Respiratory and Heart Rates of Birds at Rest, The Condor 70, no.44 (Oct 1968): 358–365.https://doi.org/10.2307/1365930Roger E Carpenter Salt and water metabolism in the marine fish-eating bat, Pizonyx vivesi, Comparative Biochemistry and Physiology 24, no.33 (Mar 1968): 951–964.https://doi.org/10.1016/0010-406X(68)90807-4Richard E Johnson Temperature regulation in the white-tailed ptarmigan, Lagopus leucurus, Comparative Biochemistry and Physiology 24, no.33 (Mar 1968): 1003–1014.https://doi.org/10.1016/0010-406X(68)90813-XSusumu Hagiwara, Shiko Chichibu, Norman Simpson Neuromuscular mechanisms of wing beat in hummingbirds, Zeitschrift f�r Vergleichende Physiologie 60, no.22 (Jan 1968): 209–218.https://doi.org/10.1007/BF00878451William R. Dawson, George A. Bartholomew TEMPERATURE REGULATION AND WATER ECONOMY OF DESERT BIRDS, (Jan 1968): 357–394.https://doi.org/10.1016/B978-1-4831-9868-2.50015-3Robert C. Lasiewski, Wesley W. Weathers, Marvin H. Bernstein Physiological responses of the giant hummingbird, Patagona gigas, Comparative Biochemistry and Physiology 23, no.33 (Dec 1967): 797–813.https://doi.org/10.1016/0010-406X(67)90342-8Philip Leitner, John E. Nelson Body temperature, oxygen consumption and heart rate in the Australian false vampire bat, Macroderma gigas, Comparative Biochemistry and Physiology 21, no.11 (Apr 1967): 65–74.https://doi.org/10.1016/0010-406X(67)90115-6Robert C. Lasiewski, William R. Dawson A Re-Examination of the Relation between Standard Metabolic Rate and Body Weight in Birds, The Condor 69, no.11 (Jan 1967): 13–23.https://doi.org/10.2307/1366368Robert C. Lasiewski Physiological Responses of the Blue-Throated and Rivoli's Hummingbirds, The Auk 84, no.11 (Jan 1967): 34–48.https://doi.org/10.2307/4083253V. A. Tucker Oxygen Consumption of a Flying Bird, Science 154, no.37453745 (Oct 1966): 150–151.https://doi.org/10.1126/science.154.3745.150Philip Leitner Body temperature, oxygen consumption, heart rate and shivering in the California mastiff bat, Eumops perotis, Comparative Biochemistry and Physiology 19, no.22 (Oct 1966): 431–443.https://doi.org/10.1016/0010-406X(66)90152-6Robert C Lasiewski, Alfredo L Acosta, Marvin H Bernstein Evaporative water loss in birds—I. Characteristics of the open flow method of determination, and their relation to estimates of thermoregulatory ability, Comparative Biochemistry and Physiology 19, no.22 (Oct 1966): 445–457.https://doi.org/10.1016/0010-406X(66)90153-8Robert C Lasiewski, Alfredo L Acosta, Marvin H Bernstein Evaporative water loss in birds—II. A modified method for determination by direct weighing, Comparative Biochemistry and Physiology 19, no.22 (Oct 1966): 459–470.https://doi.org/10.1016/0010-406X(66)90154-XJack W Hudson, Stephen L Kimzey Temperature regulation and metabolic rhythms in populations of the house sparrow, Passer domesticus, Comparative Biochemistry and Physiology 17, no.11 (Jan 1966): 203–217.https://doi.org/10.1016/0010-406X(66)90021-1Brian K. McNab An Analysis of the Body Temperatures of Birds, The Condor 68, no.11 (Jan 1966): 47–55.https://doi.org/10.2307/1365174Robert C. Lasiewski, William R. Dawson Physiological Responses to Temperature in the Common Nighthawk, The Condor 66, no.66 (Nov 1964): 477–490.https://doi.org/10.2307/1365224
Referência(s)