Acclimation to Temperature in Terrestrial Isopods: I. Lethal Temperatures

1964; University of Chicago Press; Volume: 37; Issue: 4 Linguagem: Inglês

10.1086/physzool.37.4.30152755

ISSN

1937-4267

Autores

E. B. Edney,

Tópico(s)

Insect and Arachnid Ecology and Behavior

Resumo

Previous articleNext article No AccessAcclimation to Temperature in Terrestrial Isopods: I. Lethal TemperaturesE. B. EdneyE. B. Edney Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 37, Number 4Oct., 1964 Article DOIhttps://doi.org/10.1086/physzool.37.4.30152755 Views: 24Total views on this site Citations: 37Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). PDF download Crossref reports the following articles citing this article:Erin M.C. Stewart, Vince R. Frasca, Chris C. Wilson, Graham D. Raby Short-term acclimation dynamics in a coldwater fish, Journal of Thermal Biology 112 (Feb 2023): 103482.https://doi.org/10.1016/j.jtherbio.2023.103482Teresa Rose Osborne, Jonathan C Wright Seeking refuge in subsurface microhabitats during aestivation aids avoidance of lethally high temperature and desiccation in the snail Helminthoglypta tudiculata (Binney, 1843) (Pulmonata: Helminthoglyptidae), Journal of Molluscan Studies 84, no.22 (Feb 2018): 132–140.https://doi.org/10.1093/mollus/eyy005Rui Morgado, Nuno G.C. Ferreira, Diogo N. Cardoso, Amadeu M.V.M. Soares, Susana Loureiro Abiotic factors affect the performance of the terrestrial isopod Porcellionides pruinosus, Applied Soil Ecology 95 (Nov 2015): 161–170.https://doi.org/10.1016/j.apsoil.2015.06.012 Nia Whiteley and L. S. Faulkner Temperature Influences Whole‐Animal Rates of Metabolism but Not Protein Synthesis in a Temperate Intertidal Isopod N. Whiteley and L. S. Faulkner, Physiological and Biochemical Zoology 78, no.22 (Jul 2015): 227–238.https://doi.org/10.1086/427054David Morritt, Agnar Ingólfsson Upper thermal tolerances of the beachflea Orchestia gammarellus (Pallas) (Crustacea: Amphipoda: Talitridae) associated with hot springs in Iceland, Journal of Experimental Marine Biology and Ecology 255, no.22 (Dec 2000): 215–227.https://doi.org/10.1016/S0022-0981(00)00299-9Kevin J Gaston, John I Spicer Do upper thermal tolerances differ in geographically separated populations of the beachflea Orchestia gammarellus (Crustacea: Amphipoda)?, Journal of Experimental Marine Biology and Ecology 229, no.22 (Nov 1998): 265–276.https://doi.org/10.1016/S0022-0981(98)00057-4Jonathan C. Wright, John Machin Water Vapour Absorption in Terrestrial Isopods, Journal of Experimental Biology 154, no.11 (Nov 1990): 13–30.https://doi.org/10.1242/jeb.154.1.13G. Achuthan Nair, Mahmoud Mahdy Fadiel, Abdalla I. Mohamed Effects of temperature on transpiration, behaviour, growth and feeding habits of Armadillo officinalis (Isopoda, Oniscidea) in Benghazi, Libya, Journal of Arid Environments 17, no.11 (Jul 1989): 49–55.https://doi.org/10.1016/S0140-1963(18)30923-6James A. Buchanan, Barbara A. Stewart, Bryan R. Davies Thermal acclimation and tolerance to lethal high temperature in the mountain stream amphipod Paramelita nigroculus (Barnard), Comparative Biochemistry and Physiology Part A: Physiology 89, no.33 (Jan 1988): 425–431.https://doi.org/10.1016/0300-9629(88)91051-1M.R. Warburg Isopods and Their Terrestrial Environment, (Jan 1987): 187–242.https://doi.org/10.1016/S0065-2504(08)60246-9G Achuthan Nair, N Balakrishnan Nair Transpiration rates and acclimation to water and temperature of the tropical woodlice,Porcellionides pruinosus Brandt andPorcellio laevis Latreille, Proceedings: Animal Sciences 94, no.55 (Oct 1985): 469–474.https://doi.org/10.1007/BF03186355 Jack R. Layne, Jr. , Mara L. Manis , and Dennis L. Claussen Seasonal Variation in the Time Course of Thermal Acclimation in the Crayfish Orconectes rusticus, Freshwater Invertebrate Biology 4, no.22 (Oct 2015): 98–104.https://doi.org/10.2307/1467181Michael S. Brody, Michael H. Edgar, Lawrence R. Lawlor A COST OF REPRODUCTION IN A TERRESTRIAL ISOPOD, Evolution 37, no.33 (May 2017): 653–655.https://doi.org/10.1111/j.1558-5646.1983.tb05586.xDennis L. Claussen, Lisa M. Walters Thermal acclimation in the fresh water planarians, Dugesia tigrina and D. dorotocephala, Hydrobiologia 94, no.33 (Sep 1982): 231–236.https://doi.org/10.1007/BF00016404J. Davenport Environmental Simulation Experiments on Marine and Estuarine Animals, (Jan 1982): 133–256.https://doi.org/10.1016/S0065-2881(08)60088-7Dieter Coenen-Staβ Some aspects of the water balance of two desert woodlice, Hemilepistus aphganicus and Hemilepistus reaumuri (Crustacea, Isopoda, Oniscoidea), Comparative Biochemistry and Physiology Part A: Physiology 70, no.33 (Jan 1981): 405–419.https://doi.org/10.1016/0300-9629(81)90197-3Dennis L Claussen Thermal acclimation in the crayfish, Orconectes rusticus and O. virilis, Comparative Biochemistry and Physiology Part A: Physiology 66, no.33 (Jan 1980): 377–384.https://doi.org/10.1016/0300-9629(80)90183-8Cynthia Carey Effect of constant and fluctuating temperatures on resting and active oxygen consumption of toads, Bufo boreas, Oecologia 39, no.22 (Jan 1979): 201–212.https://doi.org/10.1007/BF00348069A. N. Sastry Metabolic adaptation of Cancer irroratus developmental stages to cyclic temperatures, Marine Biology 51, no.33 (Jan 1979): 243–250.https://doi.org/10.1007/BF00386804Janet Nash The effect of daily fluctuating temperatures on the oxygen consumption of Oniscus asellus L., Comparative Biochemistry and Physiology Part A: Physiology 62, no.44 (Jan 1979): 983–987.https://doi.org/10.1016/0300-9629(79)90037-9 Carol Ann Rolph Kay , and Walter G. Whitford Critical Thermal Limits of Desert Honey Ants: Possible Ecological Implications, Physiological Zoology 51, no.22 (Sep 2015): 206–213.https://doi.org/10.1086/physzool.51.2.30157867O.A.M. Al-Habbib, J.N.R. Grainger The effect of constant and changing temperatures on the thermal resistance of Lymnaea peregra (Müller), Journal of Thermal Biology 2, no.44 (Dec 1977): 191–195.https://doi.org/10.1016/0306-4565(77)90030-4R Nagabhushanam, G K Kulkarni Thermal relations of the Indian leech,Poecilobdella viridis (Blanchard), Proceedings / Indian Academy of Sciences 86, no.44 (Oct 1977): 229–234.https://doi.org/10.1007/BF03050966Dennis L.★Claussen Thermal acclimation in ambystomatid salamanders, Comparative Biochemistry and Physiology Part A: Physiology 58, no.44 (Jan 1977): 333–340.https://doi.org/10.1016/0300-9629(77)90150-5 R. C. Newell , A. Roy , and K. B. Armitage An Analysis of Factors Affecting the Oxygen Consumption of the Isopod Ligia oceanica, Physiological Zoology 49, no.11 (Sep 2015): 109–137.https://doi.org/10.1086/physzool.49.1.30155682A. Meats Seasonal trends in acclimatization to cold in the Queensland fruit fly (Dacus tryoni, Diptera) and their prediction by means of a physiological model fed with climatological data, Oecologia 26, no.11 (Jan 1976): 73–87.https://doi.org/10.1007/BF00345654C. Lascombe, E. Pattee, C. Bornard Le role ecologique de la température dans la distribution de deux espèces proches parentes de planaires d'eau douce: Etude expérimentale, Hydrobiologia 47, no.11 (Jul 1975): 59–80.https://doi.org/10.1007/BF00036744R. C. Newell, W. Wieser, V. I. Pye Factors affecting oxygen consumption in the woodlouse Porcellio scaber latr, Oecologia 16, no.11 (Jan 1974): 31–51.https://doi.org/10.1007/BF00345086Klaus-Hubert Hoffmann Wirkung von konstanten und tagesperiodisch alternierenden Temperaturen auf Lebensdauer, Nahrungsverwertung und Fertilit�t adulter Gryllus bimaculatus, Oecologia 17, no.11 (Jan 1974): 39–54.https://doi.org/10.1007/BF00345094C. Robert Feldmeth, Elizabeth A. Stone, James H. Brown An increased scope for thermal tolerance upon acclimating pupfish (Cyprinodon) to cycling temperatures, Journal of Comparative Physiology 89, no.11 (Jan 1974): 39–44.https://doi.org/10.1007/BF00696161 John E. Kontogiannis Acquisition and Loss of Heat Resistance in Adult Tide-Pool Copepod Tigriopus californicus, Physiological Zoology 46, no.11 (Sep 2015): 50–54.https://doi.org/10.1086/physzool.46.1.30152516K. Furch Der einflu� einer Vorbehandlung mit konstanten und wechselnden Temperaturen auf die Hitzeresistenz von Gammarus salinus und Idotea balthica, Marine Biology 15, no.11 (Jul 1972): 12–34.https://doi.org/10.1007/BF00347434J. L. Cloudsley‐Thompson Acclimation, water and temperature relations of the woodlice Metoponorthus pruinosus and Periscyphis jannonei in the Sudan, Journal of Zoology 158, no.33 (Aug 2009): 267–276.https://doi.org/10.1111/j.1469-7998.1969.tb02146.xH. Precht Der Einfluß „normaler“ Temperaturen auf Lebensprozesse bei wechselwarmen Tieren unter Ausschluß der Wachstums- und Entwicklungsprozesse, Helgoländer Wissenschaftliche Meeresuntersuchungen 18, no.44 (Dec 1968): 487–548.https://doi.org/10.1007/BF01611681S. D. Bradshaw, A. R. Main Behavioural attitudes and regulation of temperature in Amphibolurus lizards, Journal of Zoology 154, no.22 (Aug 2009): 193–221.https://doi.org/10.1111/j.1469-7998.1968.tb01659.xR. J. Heron HEAT TOLERANCE OF LAST-INSTAR LARVAE OF THE LARCH SAWFLY, PRISTIPHORA ERICHSONII (HYMENOPTERA: TENTHREDINIDAE), The Canadian Entomologist 99, no.1111 (May 2012): 1150–1156.https://doi.org/10.4039/Ent991150-11Herbert Precht, Thies Basedow, Reiner Bereck, Frauke Lange, Wolfgang Thiede, Lotte Wilke Reaktionen und Adaptationen wechselwarmer Tiere nach einer Änderung der Anpassungstemperatur und der zeitliche Verlauf, Helgoländer Wissenschaftliche Meeresuntersuchungen 13, no.44 (Dec 1966): 369–401.https://doi.org/10.1007/BF01611956

Referência(s)
Altmetric
PlumX