Structure and Function of the Kidney and the Water Balance of Desert Bats
1969; University of Chicago Press; Volume: 42; Issue: 3 Linguagem: Inglês
10.1086/physzool.42.3.30155492
ISSN1937-4267
Autores Tópico(s)Bat Biology and Ecology Studies
ResumoPrevious articleNext article No AccessStructure and Function of the Kidney and the Water Balance of Desert BatsRoger E. CarpenterRoger E. CarpenterPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 42, Number 3Jul., 1969 Article DOIhttps://doi.org/10.1086/physzool.42.3.30155492 Views: 45Total views on this site Citations: 56Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1969 University of ChicagoPDF download Crossref reports the following articles citing this article:Ram Mohan, Vaibhav Chhaya, Anand Krishnan Seasonality and interspecific temporal partitioning in a semiarid grassland bat assemblage of northwestern India, Journal of Arid Environments 205 (Oct 2022): 104818.https://doi.org/10.1016/j.jaridenv.2022.104818Emine Pınar Paksuz Renal adaptation in relation to insectivorous feeding habit in the greater mouse‐eared bat, Myotis myotis (Chiroptera: Vespertilionidae), The Anatomical Record 239 (May 2022).https://doi.org/10.1002/ar.24946Mattia Piccioli Cappelli, Rachel V. Blakey, Daniel Taylor, Jon Flanders, Trish Badeen, Sally Butts, Winifred F. Frick, Hugo Rebelo Limited refugia and high velocity range-shifts predicted for bat communities in drought-risk areas of the Northern Hemisphere, Global Ecology and Conservation 28 (Aug 2021): e01608.https://doi.org/10.1016/j.gecco.2021.e01608Irene Conenna, Luca Santini, Ricardo Rocha, Ara Monadjem, Mar Cabeza, Danilo Russo, Shai Meiri Global patterns of functional trait variation along aridity gradients in bats, Global Ecology and Biogeography 30, no.55 (Mar 2021): 1014–1029.https://doi.org/10.1111/geb.13278Rick A. Adams, Mark A. Hayes The Importance of Water Availability to Bats: Climate Warming and Increasing Global Aridity, (Jan 2021): 105–120.https://doi.org/10.1007/978-3-030-54727-1_7Danielle L. Eastick, Amy M. Edwards, Stephen R. Griffiths, Sarah J. Spencer, Kylie A. Robert Validation of quantitative magnetic resonance as a non-invasive measure of body composition in an Australian microbat, Australian Mammalogy 43, no.22 (Jan 2021): 196.https://doi.org/10.1071/AM19060Hibat Ellah Loumassine, Nadège Bonnot, Benjamin Allegrini, Mohammed Lamine Bendjeddou, Farid Bounaceur, Stéphane Aulagnier How arid environments affect spatial and temporal activity of bats, Journal of Arid Environments 180 (Sep 2020): 104206.https://doi.org/10.1016/j.jaridenv.2020.104206Theresa M. Laverty, Joel Berger Do bats seek clean water? A perspective on biodiversity from the Namib Desert, Biological Conservation 248 (Aug 2020): 108686.https://doi.org/10.1016/j.biocon.2020.108686Theresa M. Laverty The Namib Desert and Its Bats, (Jan 2020): 181–192.https://doi.org/10.1016/B978-0-12-409548-9.12011-1Veronica Zamora‐Gutierrez, Tatsuya Amano, Kate E. Jones Spatial and taxonomic biases in bat records: Drivers and conservation implications in a megadiverse country, Ecology and Evolution 9, no.2424 (Nov 2019): 14130–14141.https://doi.org/10.1002/ece3.5848Irene Conenna, Adrià López-Baucells, Ricardo Rocha, Simon Ripperger, Mar Cabeza Movement seasonality in a desert-dwelling bat revealed by miniature GPS loggers, Movement Ecology 7, no.11 (Aug 2019).https://doi.org/10.1186/s40462-019-0170-8Orly Razgour, Mike Persey, Uzi Shamir, Carmi Korine, Alexandra Syphard The role of climate, water and biotic interactions in shaping biodiversity patterns in arid environments across spatial scales, Diversity and Distributions 24, no.1010 (May 2018): 1440–1452.https://doi.org/10.1111/ddi.12773Lucas K. Hall, Connor T. Lambert, Randy T. Larsen, Robert N. Knight, Brock R. McMillan Will climate change leave some desert bat species thirstier than others?, Biological Conservation 201 (Sep 2016): 284–292.https://doi.org/10.1016/j.biocon.2016.07.020Carmi Korine, Rick Adams, Danilo Russo, Marina Fisher-Phelps, David Jacobs Bats and Water: Anthropogenic Alterations Threaten Global Bat Populations, (Dec 2015): 215–241.https://doi.org/10.1007/978-3-319-25220-9_8Agustí Muñoz-Garcia, Paloma Larraín, Miriam Ben-Hamo, Ariovaldo Cruz-Neto, Joseph B. Williams, Berry Pinshow, Carmi Korine Metabolic rate, evaporative water loss and thermoregulatory state in four species of bats in the Negev desert, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 191 (Jan 2016): 156–165.https://doi.org/10.1016/j.cbpa.2015.10.010Carmi Korine, Amanda M. Adams, Uzi Shamir, Amit Gross Effect of water quality on species richness and activity of desert-dwelling bats, Mammalian Biology 80, no.33 (May 2015): 185–190.https://doi.org/10.1016/j.mambio.2015.03.009Philip C. Withers, Christine E. Cooper, Roberto F. Nespolo Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte ( Dromiciops gliroides ), Journal of Experimental Biology 215, no.1616 (Aug 2012): 2806–2813.https://doi.org/10.1242/jeb.070433Orly Razgour, Carmi Korine, David Saltz Does interspecific competition drive patterns of habitat use in desert bat communities?, Oecologia 167, no.22 (Apr 2011): 493–502.https://doi.org/10.1007/s00442-011-1995-zO. Razgour, C. Korine, D. Saltz Pond characteristics as determinants of species diversity and community composition in desert bats, Animal Conservation 13, no.55 (May 2010): 505–513.https://doi.org/10.1111/j.1469-1795.2010.00371.xPhilip C. Withers, Christine E. Cooper Metabolic Depression: A Historical Perspective, (Sep 2009): 1–23.https://doi.org/10.1007/978-3-642-02421-4_1Bradley Hartman Bakken, L. Gerardo Herrera M., Robert M. Carroll, Jorge Ayala-Berdón, Jorge E. Schondube, Carlos Martínez del Rio A nectar-feeding mammal avoids body fluid disturbances by varying renal function, American Journal of Physiology-Renal Physiology 295, no.66 (Dec 2008): F1855–F1863.https://doi.org/10.1152/ajprenal.90349.2008Rick A. Adams, Mark A. Hayes Water availability and successful lactation by bats as related to climate change in arid regions of western North America, Journal of Animal Ecology 77, no.66 (Nov 2008): 1115–1121.https://doi.org/10.1111/j.1365-2656.2008.01447.x L. Gerardo Herrera M. and Carlos A. Mancina G. Sucrose Hydrolysis Does Not Limit Food Intake by Pallas's Long‐Tongued Bats L. G. Herrera M. and C. A. Mancina G., Physiological and Biochemical Zoology 81, no.11 (Jul 2015): 119–124.https://doi.org/10.1086/522904Winifred F. Frick, John P. Hayes, Paul A. Heady III Island biogeography of bats in Baja California, Mexico: patterns of bat species richness in a near-shore archipelago, Journal of Biogeography 0, no.00 (Oct 2007): 071009214220001–???.https://doi.org/10.1111/j.1365-2699.2007.01798.xSTUART R. TUTTLE, CAROL L. CHAMBERS, TAD C. THEIMER Potential Effects of Livestock Water-Trough Modifications on Bats in Northern Arizona, Wildlife Society Bulletin 34, no.33 (Oct 2006): 602–608.https://doi.org/10.2193/0091-7648(2006)34[602:PEOLWM]2.0.CO;2 Sagi Marom , Carmi Korine , Michał S. Wojciechowski , Christopher R. Tracy , and Berry Pinshow Energy Metabolism and Evaporative Water Loss in the European Free‐Tailed Bat and Hemprich's Long‐Eared Bat (Microchiroptera): Species Sympatric in the Negev Desert S. Marom, C. Korine, M. S. Wojciechowski, C. R. Tracy, and B. Pinshow, Physiological and Biochemical Zoology 79, no.55 (Jul 2015): 944–956.https://doi.org/10.1086/505999Giovanni Casotti, L. Gerardo Herrera M., José J. Flores M., Carlos A. Mancina, Eldon J. Braun Relationships between renal morphology and diet in 26 species of new world bats (suborder microchiroptera), Zoology 109, no.33 (Aug 2006): 196–207.https://doi.org/10.1016/j.zool.2006.03.003 Nicte Ramírez P. , L. Gerardo Herrera M. , and Leticia Mirón M. Physiological Constraint to Food Ingestion in a New World Nectarivorous Bat N. Ramírez P., L. G. Herrera M., and L. Mirón M., Physiological and Biochemical Zoology 78, no.66 (Jul 2015): 1032–1038.https://doi.org/10.1086/432921John E Bassett Role of urea in the postprandial urine concentration cycle of the insectivorous bat Antrozous pallidus, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 137, no.22 (Feb 2004): 271–284.https://doi.org/10.1016/j.cbpb.2003.10.002Paul M. Cryan, Blair O. Wolf Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat, Lasiurus cinereus, during its spring migration, Journal of Experimental Biology 206, no.1919 (Oct 2003): 3381–3390.https://doi.org/10.1242/jeb.00574L. G. Herrera, C. Martínez Del Río, E. Braun, K. A. Hobson Renal Structure in Neotropical Bats: Using Stable Isotopes to Explore Relationships between Diet and Morphology, Isotopes in Environmental and Health Studies 37, no.11 (Apr 2001): 1–11.https://doi.org/10.1080/10256010108033277Jorge E. Schondube, L. Gerardo Herrera-M, Carlos Martínez del Rio Diet and the evolution of digestion and renal function in phyllostomid bats, Zoology 104, no.11 (Jan 2001): 59–73.https://doi.org/10.1078/0944-2006-00007 Shane K. Maloney , Gary N. Bronner , and Rochelle Buffenstein Thermoregulation in the Angolan Free‐Tailed Bat Mops condylurus: A Small Mammal That Uses Hot Roosts S. K. Maloney, G. N. Bronner, and R. Buffenstein, Physiological and Biochemical Zoology 72, no.44 (Jul 2015): 385–396.https://doi.org/10.1086/316677York Winter In Vivo Measurement of Near Maximal Rates of Nutrient Absorption in a Mammal, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 119, no.33 (Mar 1998): 853–859.https://doi.org/10.1016/S1095-6433(98)01026-5A. N. Makanya The morphology of the intestine of the entomophagous longfingered bat, miniopterus inflatus: Mucosal topography and possible landmarks, Acta Biologica Hungarica 48, no.11 (Dec 1997): 15–27.https://doi.org/10.1007/BF03543171P. I. Webb, J. R. Speakman, P. A. Racey Evaporative water loss in two sympatric species of vespertilionid bat, Plecotus auritus and Myotis daubentoni : relation to foraging mode and implications for roost site selection, Journal of Zoology 235, no.22 (May 2009): 269–278.https://doi.org/10.1111/j.1469-7998.1995.tb05143.xT. H. Kunz, J. O. Whitaker, M. D. Wadanoli Dietary energetics of the insectivorous Mexican free-tailed bat (Tadarida brasiliensis) during pregnancy and lactation, Oecologia 101, no.44 (Jan 1995): 407–415.https://doi.org/10.1007/BF00329419P. I. Webb, J. R. Speakman, P. A. Racey Post‐prandial urine loss and its relation to ecology in brown long‐eared ( Plecotus auritus ) and Daubenton's ( Myotis daubentoni ) bats (Chiroptera: Vespertilionidae), Journal of Zoology 233, no.11 (May 2009): 165–173.https://doi.org/10.1111/j.1469-7998.1994.tb05267.xLaura J Fielden, M.R Perrin, G.C Hickman Water metabolism in the Namib Desert Golden Mole, Eremitalpa granti namibensis (Chrysochloridae), Comparative Biochemistry and Physiology Part A: Physiology 96, no.11 (Jan 1990): 227–234.https://doi.org/10.1016/0300-9629(90)90070-9P. G. Willmer The role of insect water balance in pollination ecology: Xylocopa and Calotropis, Oecologia 76, no.33 (Aug 1988): 430–438.https://doi.org/10.1007/BF00377039D. C. D. Happold, M. Happold Renal form and function in relation to the ecology of bats (Chiroptera)from Malawi, Central Africa, Journal of Zoology 215, no.44 (Mar 2009): 629–655.https://doi.org/10.1111/j.1469-7998.1988.tb02400.xJohn E Bassett Habitat aridity and urine concentrating ability of nearctic, insectivorous bats, Comparative Biochemistry and Physiology Part A: Physiology 83, no.11 (Jan 1986): 125–131.https://doi.org/10.1016/0300-9629(86)90099-XO. v. Helversen, H. -U. Reyer Nectar intake and energy expenditure in a flower visiting bat, Oecologia 63, no.22 (Aug 1984): 178–184.https://doi.org/10.1007/BF00379875Andreas Bertsch Foraging in male bumblebees (Bombus lucorum L.): maximizing energy or minimizing water load?, Oecologia 62, no.33 (Jun 1984): 325–336.https://doi.org/10.1007/BF00384264Eugene H Studier, Don E Wilson Natural urine concentrations and composition in neotropical bats, Comparative Biochemistry and Physiology Part A: Physiology 75, no.44 (Jan 1983): 509–515.https://doi.org/10.1016/0300-9629(83)90413-9Eugene H. Studier, Brian C. Boyd, Ada T. Feldman, Richard W. Dapson, Don E. Wilson Renal function in the neotropical bat, Artibeus jamaicensis, Comparative Biochemistry and Physiology Part A: Physiology 74, no.22 (Jan 1983): 199–209.https://doi.org/10.1016/0300-9629(83)90589-3Brian K. McNab Evolutionary Alternatives in the Physiological Ecology of Bats, (Jan 1982): 151–200.https://doi.org/10.1007/978-1-4613-3421-7_4 Stan L. Lindstedt Energetics and Water Economy of the Smallest Desert Mammal, Physiological Zoology 53, no.11 (Sep 2015): 82–97.https://doi.org/10.1086/physzool.53.1.30155777CHARLES R. BLEM The Energetics of Migration, (Jan 1980): 175–224.https://doi.org/10.1016/B978-0-08-091833-4.50008-0 Daniel R. Deavers , and Jack W. Hudson Water Metabolism and Estimated Field Water Budgets in Two Rodents (Clethrionomys gapperi and Peromyscus leucopus) and an Insectivore (Blarina brevicauda) Inhabiting the Same Mesic Environment, Physiological Zoology 52, no.22 (Sep 2015): 137–152.https://doi.org/10.1086/physzool.52.2.30152559Kenneth N Geluso, Eugene H Studier Diurnal fluctuation in urine concentration in the little brown bat, Myotis lucifugus, in a natural roost, Comparative Biochemistry and Physiology Part A: Physiology 62, no.22 (Jan 1979): 471–473.https://doi.org/10.1016/0300-9629(79)90088-4John E Bassett, Jacob E Wiebers Urine concentration dynamics in the postprandial and the fasting Myotis lucifugus lucifugus, Comparative Biochemistry and Physiology Part A: Physiology 64, no.33 (Jan 1979): 373–379.https://doi.org/10.1016/0300-9629(79)90457-2Kenneth N. Geluso Urine concentration cycles of insectivorous bats in the laboratory, Journal of Comparative Physiology ? B 99, no.44 (Jan 1975): 309–319.https://doi.org/10.1007/BF00710371D.J. Howell Bats and pollen: Physiological aspects of the syndrome of chiropterophily, Comparative Biochemistry and Physiology Part A: Physiology 48, no.22 (Jun 1974): 263–276.https://doi.org/10.1016/0300-9629(74)90707-5Willaim G Ewing, Eugene H Studier, Michael J O'Farrell Autumn fat deposition and gross body composition in three species of Myotis, Comparative Biochemistry and Physiology 36, no.11 (Sep 1970): 119–129.https://doi.org/10.1016/0010-406X(70)90658-4Eugene H Studier Evaporative water loss in bats, Comparative Biochemistry and Physiology 35, no.44 (Aug 1970): 935–943.https://doi.org/10.1016/0010-406X(70)90087-3
Referência(s)