NMDA-Induced Calcium Loads Recycle Across the Mitochondrial Inner Membrane of Hippocampal Neurons in Culture
2002; American Physiological Society; Volume: 87; Issue: 2 Linguagem: Inglês
10.1152/jn.00345.2001
ISSN1522-1598
AutoresGuang Jian Wang, Stanley A. Thayer,
Tópico(s)Alzheimer's disease research and treatments
ResumoMitochondria sequester N-methyl-D-aspartate (NMDA)-induced Ca(2+) loads and regulate the shape of intracellular Ca(2+) concentration ([Ca(2+)](i)) responses in neurons. When isolated mitochondria are exposed to high [Ca(2+)](,) Ca(2+) enters the matrix via the uniporter and returns to the cytosol by Na(+)/Ca(2+) exchange. Released Ca(2+) may re-enter the mitochondrion recycling across the inner membrane dissipating respiratory energy. Ca(2+) recycling, the continuous uptake and release of Ca(2+) by mitochondria, has not been described in intact neurons. Here we used single-cell microfluorimetry to measure [Ca(2+)](i) and mitochondrially targeted aequorin to measure matrix Ca(2+) concentration ([Ca(2+)](mt)) to determine whether Ca(2+) recycles across the mitochondrial inner membrane in intact neurons following treatment with NMDA. We used ruthenium red and CGP 37157 to block uptake via the uniporter and release via Na(+)/Ca(2+) exchange, respectively. As predicted by the Ca(2+) recycling hypothesis, blocking the uniporter immediately following challenge with 200 microM NMDA produced a rapid and transient increase in cytosolic Ca(2+) without a corresponding increase in matrix Ca(2+). Blocking mitochondrial Ca(2+) release produced the opposite effect, depressing cytosolic Ca(2+) levels and prolonging the time for matrix Ca(2+) levels to recover. The Ca(2+) recycling hypothesis uniquely predicts these reciprocal changes in the Ca(2+) levels between the two compartments. Ca(2+) recycling was not detected following treatment with 20 microM NMDA. Thus Ca(2+) recycling across the inner membrane was more pronounced following treatment with a high relative to a low concentration of NMDA, consistent with a role in Ca(2+)-dependent neurotoxicity.
Referência(s)