Studies on the Physiological Variation between Tropical and Temperate-Zone Fiddler Crabs of the Genus Uca. IV. Oxygen Consumption of Larvae and Young Crabs Reared in the Laboratory

1966; University of Chicago Press; Volume: 39; Issue: 1 Linguagem: Inglês

10.1086/physzool.39.1.30152765

ISSN

1937-4267

Autores

F. John Vernberg, J. D. Gostlow,

Tópico(s)

Crustacean biology and ecology

Resumo

Previous articleNext article No AccessStudies on the Physiological Variation between Tropical and Temperate-Zone Fiddler Crabs of the Genus Uca. IV. Oxygen Consumption of Larvae and Young Crabs Reared in the LaboratoryF. John Vernberg and J. D. Gostlow Jr.F. John Vernberg and J. D. Gostlow Jr.PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 39, Number 1Jan., 1966 Article DOIhttps://doi.org/10.1086/physzool.39.1.30152765 Views: 4Total views on this site Citations: 43Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1966 The University of ChicagoPDF download Crossref reports the following articles citing this article:M. Zachary Darnell, Kelly M. Darnell Geographic variation in thermal tolerance and morphology in a fiddler crab sister-species pair, Marine Biology 165, no.22 (Jan 2018).https://doi.org/10.1007/s00227-017-3282-yMichael S. Rosenberg, Robert Guralnick Contextual Cross-Referencing of Species Names for Fiddler Crabs (Genus Uca): An Experiment in Cyber-Taxonomy, PLoS ONE 9, no.77 (Jul 2014): e101704.https://doi.org/10.1371/journal.pone.0101704Mark A. Jensen, Quinn P. Fitzgibbon, Chris G. Carter, Louise R. Adams The effect of stocking density on growth, metabolism and ammonia–N excretion during larval ontogeny of the spiny lobster Sagmariasus verreauxi, Aquaculture 376-379 (Feb 2013): 45–53.https://doi.org/10.1016/j.aquaculture.2012.10.033David O. Conover, Tara A. Duffy, Lyndie A. Hice The Covariance between Genetic and Environmental Influences across Ecological Gradients, Annals of the New York Academy of Sciences 1168, no.11 (Jun 2009): 100–129.https://doi.org/10.1111/j.1749-6632.2009.04575.xLuis Ernesto Arruda Bezerra, Helena Matthews-Cascon Population and reproductive biology of the fiddler crab Uca thayeri Rathbun, 1900 (Crustacea: Ocypodidae) in a tropical mangrove from Northeast Brazil, Acta Oecologica 31, no.33 (May 2007): 251–258.https://doi.org/10.1016/j.actao.2006.10.003D. O. Conover, L. M. Clarke, S. B. Munch, G. N. Wagner Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation, Journal of Fish Biology 69, no.scsc (Dec 2006): 21–47.https://doi.org/10.1111/j.1095-8649.2006.01274.xHans O. Pörtner Climate-dependent evolution of Antarctic ectotherms: An integrative analysis, Deep Sea Research Part II: Topical Studies in Oceanography 53, no.8-108-10 (Apr 2006): 1071–1104.https://doi.org/10.1016/j.dsr2.2006.02.015Fernanda jordão Guimarães, Maria Lucia Negreiros‐Fransozo Juvenile development and growth patterns in the mud crab Eurytium limosum (Say, 1818) (Decapoda, Brachyura, Xanthidae) under laboratory conditions, Journal of Natural History 39, no.2323 (Sep 2005): 2145–2161.https://doi.org/10.1080/00222930500061254Nasseer Idrisi, Salman D. Salman Distribution, development, and metabolism of larval stages of the warmwater shrimp, Caridina babaulti basrensis (Decapoda, Atyidae), Marine and Freshwater Behaviour and Physiology 38, no.11 (Mar 2005): 31–42.https://doi.org/10.1080/10236240400029366D Lemos, V.N Phan Energy partitioning into growth, respiration, excretion and exuvia during larval development of the shrimp Farfantepenaeus paulensis, Aquaculture 199, no.1-21-2 (Jul 2001): 131–143.https://doi.org/10.1016/S0044-8486(01)00523-3Markus Frederich, Hans O. Pörtner Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 279, no.55 (Nov 2000): R1531–R1538.https://doi.org/10.1152/ajpregu.2000.279.5.R1531 Jonathon H. Stillman and George N. Somero A Comparative Analysis of the Upper Thermal Tolerance Limits of Eastern Pacific Porcelain Crabs, Genus Petrolisthes: Influences of Latitude, Vertical Zonation, Acclimation, and Phylogeny J. H. Stillman and G. N. Somero, Physiological and Biochemical Zoology 73, no.22 (Jul 2015): 200–208.https://doi.org/10.1086/316738A.Christine Brown, Nora B Terwilliger Developmental changes in oxygen uptake in Cancer magister (Dana) in response to changes in salinity and temperature, Journal of Experimental Marine Biology and Ecology 241, no.22 (Aug 1999): 179–192.https://doi.org/10.1016/S0022-0981(99)00071-4D. Berrigan, L. Partridge Influence of temperature and activity on the metabolic rate of adult Drosophila melanogaster, Comparative Biochemistry and Physiology Part A: Physiology 118, no.44 (Dec 1997): 1301–1307.https://doi.org/10.1016/S0300-9629(97)00030-3H. Schurmann, J. F. Steffensen Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod, Journal of Fish Biology 50, no.66 (Jun 1997): 1166–1180.https://doi.org/10.1111/j.1095-8649.1997.tb01645.xBarbara E. Brown Adaptations of Reef Corals to Physical Environmental Stress, (Jan 1997): 221–299.https://doi.org/10.1016/S0065-2881(08)60224-2David O. Conover, Eric T. Schultz Phenotypic similarity and the evolutionary significance of countergradient variation, Trends in Ecology & Evolution 10, no.66 (Jun 1995): 248–252.https://doi.org/10.1016/S0169-5347(00)89081-3K.H. Chu, N.N. Ovsianico-Koulikowsky Ontogenetic changes in metabolic activity and biochemical composition in the shrimp, Metapenaeus ensis, Journal of Experimental Marine Biology and Ecology 183, no.11 (Oct 1994): 11–26.https://doi.org/10.1016/0022-0981(94)90153-8K. Kurmaly, A. B. Yule, D. A. Jones Effects of body size and temperature on the metabolic rate of Penaeus monodon, Marine Biology 103, no.11 (Oct 1989): 25–30.https://doi.org/10.1007/BF00391061K. Kurmaly, A.B. Yule, D.A. Jones An energy budget for the larvae of Penaeus monodon (Fabricius), Aquaculture 81, no.11 (Sep 1989): 13–25.https://doi.org/10.1016/0044-8486(89)90227-5J. H. Vinuesa, L. Ferrari, R. J. Lombardo Effect of temperature and salinity on larval development of southern king crab (Lithodes antarcticus), Marine Biology 85, no.11 (Jan 1985): 83–87.https://doi.org/10.1007/BF00396418Ralph R. Dawirs Respiration, energy balance and development during growth and starvation of Carcinus maenas L. larvae (Decapoda:Portunidae), Journal of Experimental Marine Biology and Ecology 69, no.22 (Jun 1983): 105–128.https://doi.org/10.1016/0022-0981(83)90061-8Alois Herzig The ecological significance of the relationship between temperature and duration of embryonic development in planktonic freshwater copepods, Hydrobiologia 100, no.11 (Jan 1983): 65–91.https://doi.org/10.1007/BF00027423Charles L. McKenney, Jerry M. Neff THE ONTOGENY OF RESISTANCE ADAPTATION AND METABOLIC COMPENSATION TO SALINITY AND TEMPERATURE BY THE CARIDEAN SHRIMP, PALAEMONETES PUGIO, AND MODIFICATION BY SUBLETHAL ZINC EXPOSURE, (Jan 1981): 205–240.https://doi.org/10.1016/B978-0-12-718450-0.50014-6R.B. Laughlin, J.M. Neff Influence of temperature, salinity, and phenanthrene (a petroleum derived polycyclic aromatic hydrocarbon) on the respiration of larval mud crabs, Rhithropanopeus harrisii, Estuarine and Coastal Marine Science 10, no.66 (Jun 1980): 655–669.https://doi.org/10.1016/S0302-3524(80)80094-6Gloria S. Moreira, John C. McNamara, Plinio S. Moreira, Martin Weinrich Temperature and salinity effects on the respiratory metabolism of the first zoeal stage of Macrobrachium holthuisi Genofre & Lobão (decapoda: Palaemonidae), Journal of Experimental Marine Biology and Ecology 47, no.22 (Jan 1980): 141–148.https://doi.org/10.1016/0022-0981(80)90108-2Lenwood W. Hall BLUE CRAB BEHAVIOR IN RELATION TO POWER PLANTS, (Jan 1980): 207–225.https://doi.org/10.1016/B978-0-12-350950-5.50014-5J.S. Levinton GENETIC DIVERGENCE IN ESTUARIES, (Jan 1980): 509–520.https://doi.org/10.1016/B978-0-12-404060-1.50047-2Daniel M. Levine, Stephen D. Sulkin Partitioning and utilization of energy during the larval development of the xanthid crab, Rhithropanopeus harrisii (Gould), Journal of Experimental Marine Biology and Ecology 40, no.33 (Oct 1979): 247–257.https://doi.org/10.1016/0022-0981(79)90054-6AUSTIN B. WILLIAMS, THOMAS W. DUKE Crabs (Arthropoda: Crustacea: Decapoda: Brachyura), (Jan 1979): 171–233.https://doi.org/10.1016/B978-0-12-328440-2.50012-7Frank C Schatzlein, John D Costlow Oxygen consumption of the larvae of the decapod crustaceans, Emerita talpoida (say) and Libinia emarginata leach, Comparative Biochemistry and Physiology Part A: Physiology 61, no.33 (Jan 1978): 441–450.https://doi.org/10.1016/0300-9629(78)90063-4A.N. Sastry PHYSIOLOGICAL ADAPTATION OF CANCER IRRORATUS LARVAE TO CYCLIC TEMPERATURES, (Jan 1978): 57–65.https://doi.org/10.1016/B978-0-08-021548-8.50014-0Barney J Venables, William D Pearson, Lloyd C Fitzpatrick Thermal and metabolic relations of largemouth bass, Micropterus salmoides, from a heated reservoir and a hatchery in north central texas, Comparative Biochemistry and Physiology Part A: Physiology 57, no.11 (Jan 1977): 93–98.https://doi.org/10.1016/0300-9629(77)90356-5A.N. SASTRY, SANDRA L. VARGO Variations in the Physiological Responses of Crustacean Larvae to Temperature, (Jan 1977): 401–423.https://doi.org/10.1016/B978-0-12-718240-7.50029-2W.B. Vernberg, G.S. Moreira Metabolic-temperature responses of the copepod Euterpina acutifrons (dana) from Brazil, Comparative Biochemistry and Physiology Part A: Physiology 49, no.44 (Dec 1974): 757–761.https://doi.org/10.1016/0300-9629(74)90902-5R. G. Lough, J. J. Gonor A response-surface approach to the combined effects of temperature and salinity on the larval development of Adula californiensis (Pelecypoda: Mytilidae). II. Long-term Larval survival and growth in relation to respiration, Marine Biology 22, no.44 (Oct 1973): 295–305.https://doi.org/10.1007/BF00391385A.N. Sastry, J.F. McCarthy Diversity in metabolic adaptation of pelagic larval stages of two sympatric species of brachyuran crabs, Netherlands Journal of Sea Research 7 (Aug 1973): 434–446.https://doi.org/10.1016/0077-7579(73)90064-1Bruce W Belman, James J Childress Oxygen consumption of the larvae of the lobster Panulirus interruptus (Randall) and the crab Cancer productus Randall, Comparative Biochemistry and Physiology Part A: Physiology 44, no.33 (Mar 1973): 821–828.https://doi.org/10.1016/0300-9629(73)90146-1?. Lucu, D. Siebers, K. R. Sperling Comparison of osmoregulation between Adriatic and North Sea Carcinus, Marine Biology 22, no.11 (Jan 1973): 85–95.https://doi.org/10.1007/BF00388914Winona B. Vernberg, F. John Vernberg Estuaries, (Jan 1972): 162–230.https://doi.org/10.1007/978-3-642-65334-6_4Lloyd C. Fitzpatrick, John R. Bristol, Robert M. Stokes Thermal acclimation and metabolism in the allegheny mountain salamander Desmognathus ochrophaeus, Comparative Biochemistry and Physiology Part A: Physiology 40, no.33 (Nov 1971): 681–688.https://doi.org/10.1016/0300-9629(71)90253-2H. Precht Der Einfluß "normaler" Temperaturen auf Lebensprozesse bei wechselwarmen Tieren unter Ausschluß der Wachstums- und Entwicklungsprozesse, Helgoländer Wissenschaftliche Meeresuntersuchungen 18, no.44 (Dec 1968): 487–548.https://doi.org/10.1007/BF01611681 ADDENDUM, Biological Reviews 41, no.44 (Nov 1966): 638–640.https://doi.org/10.1111/j.1469-185X.1966.tb01625.x

Referência(s)
Altmetric
PlumX