A Function of the Enlarged Middle-Ear Cavities of the Kangaroo Rat, Dipodomys

1962; University of Chicago Press; Volume: 35; Issue: 3 Linguagem: Inglês

10.1086/physzool.35.3.30152809

ISSN

1937-4267

Autores

Douglas B. Webster,

Tópico(s)

Marine animal studies overview

Resumo

Previous articleNext article No AccessA Function of the Enlarged Middle-Ear Cavities of the Kangaroo Rat, DipodomysDouglas B. WebsterDouglas B. Webster Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 35, Number 3Jul., 1962 Article DOIhttps://doi.org/10.1086/physzool.35.3.30152809 Views: 20Total views on this site Citations: 92Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1962 University of ChicagoPDF download Crossref reports the following articles citing this article:Norberto P. Giannini, Fernando Abdala, David A. Flores, Laura A. B. Wilson Ontogenetic allometry reveals the imprint of myrmecophagy in the skull of the numbat, Myrmecobius fasciatus Waterhouse, 1836 (Marsupialia: Myrmecobiidae), Alcheringa: An Australasian Journal of Palaeontology 55 (Jan 2023): 1–9.https://doi.org/10.1080/03115518.2022.2153268Joshua X. Samuels, Jonathan J.-M. Calede, Robert M. Hunt, Jr. The earliest dipodomyine heteromyid in North America and the phylogenetic relationships of geomorph rodents, PeerJ 11 (Mar 2023): e14693.https://doi.org/10.7717/peerj.14693Melissa C Taylor, Kenny J Travouillon, Margaret E Andrew, Patricia A Fleming, Natalie M Warburton, Zhi-Yun Jia Keeping an ear out: size relationship of the tympanic bullae and pinnae in bandicoots and bilbies (Marsupialia: Peramelemorphia), Current Zoology 68, no.33 (Jul 2021): 251–264.https://doi.org/10.1093/cz/zoab055Grace A. Freymiller, Malachi D. Whitford, M. Janneke Schwaner, Craig P. McGowan, Timothy E. Higham, Rulon W. Clark Comparative analysis of Dipodomys species indicates that kangaroo rat hindlimb anatomy is adapted for rapid evasive leaping, Journal of Anatomy 240, no.33 (Oct 2021): 466–474.https://doi.org/10.1111/joa.13567Chaiane Teila Iaeger, Renan Maestri, Rodrigo Fornel, John Scheibe Diversification of the cranium and mandible of spiny rats of the genus Trinomys (Rodentia: Echimyidae) in an environmental and phylogenetic context, Journal of Mammalogy 102, no.22 (Feb 2021): 603–614.https://doi.org/10.1093/jmammal/gyaa177Christopher J Clark, Krista LePiane, Lori Liu Evolutionary and Ecological Correlates of Quiet Flight in Nightbirds, Hawks, Falcons, and Owls, Integrative and Comparative Biology 60, no.55 (May 2020): 1123–1134.https://doi.org/10.1093/icb/icaa039Krista LePiane, Christopher J Clark Evidence that the Dorsal Velvet of Barn Owl Wing Feathers Decreases Rubbing Sounds during Flapping Flight, Integrative and Comparative Biology 60, no.55 (Jun 2020): 1068–1079.https://doi.org/10.1093/icb/icaa045Christopher J. Clark, Emily A. Mistick Humming hummingbirds, insect flight tones and a model of animal flight sound, The Journal of Experimental Biology 223, no.1919 (Aug 2020): jeb214965.https://doi.org/10.1242/jeb.214965Sonny S. Bleicher, Burt P. Kotler, Cynthia J. Downs, Joel S. Brown, M. Noelia Barrios‐Garcia Intercontinental test of constraint‐breaking adaptations: Testing behavioural plasticity in the face of a predator with novel hunting strategies, Journal of Animal Ecology 89, no.88 (Apr 2020): 1837–1850.https://doi.org/10.1111/1365-2656.13234Christopher J Clark, Krista LePiane, Lori Liu Evolution and Ecology of Silent Flight in Owls and Other Flying Vertebrates, Integrative Organismal Biology 2, no.11 (Jan 2020).https://doi.org/10.1093/iob/obaa001M D Whitford, G A Freymiller, T E Higham, R W Clark The Effects of Temperature on the Kinematics of Rattlesnake Predatory Strikes in Both Captive and Field Environments, Integrative Organismal Biology 2, no.11 (Oct 2020).https://doi.org/10.1093/iob/obaa025Malachi D. Whitford, Grace A. Freymiller, Rulon W. Clark, W. Koenig Managing predators: The influence of kangaroo rat antipredator displays on sidewinder rattlesnake hunting behavior, Ethology 125, no.77 (Apr 2019): 450–456.https://doi.org/10.1111/eth.12869Asghar Khajeh, Zeinolabedin Mohammadi, Fatemeh Ghorbani, Javad Meshkani Variation of the auditory system in the Indian Gerbil, Tatera indica Hardwicke, 1807, (Muridae, Rodentia) from the east of Iran, Journal of Asia-Pacific Biodiversity 12, no.22 (Jun 2019): 139–143.https://doi.org/10.1016/j.japb.2018.12.003Grace A Freymiller, Malachi D Whitford, Timothy E Higham, Rulon W Clark Escape dynamics of free-ranging desert kangaroo rats (Rodentia: Heteromyidae) evading rattlesnake strikes, Biological Journal of the Linnean Society 127, no.11 (Mar 2019): 164–172.https://doi.org/10.1093/biolinnean/blz027Malachi D. Whitford, Grace A. Freymiller, Timothy E. Higham, Rulon W. Clark, Anthony Herrel Determinants of predation success: How to survive an attack from a rattlesnake, Functional Ecology 195 (Mar 2019).https://doi.org/10.1111/1365-2435.13318Sonny S. Bleicher, Burt P. Kotler, Joel S. Brown Comparing Plasticity of Response to Perceived Risk in the Textbook Example of Convergent Evolution of Desert Rodents and Their Predators; a Manipulative Study Employing the Landscape of Fear, Frontiers in Behavioral Neuroscience 13 (Mar 2019).https://doi.org/10.3389/fnbeh.2019.00058Edith R. Dempster Ultrasonic Vocalizations in 10 Taxa of Southern African Gerbilline Rodents, (Jan 2018): 207–216.https://doi.org/10.1016/B978-0-12-809600-0.00020-2Talia Y. Moore, Alberto M. Rivera, Andrew A. Biewener Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage, Frontiers in Zoology 14, no.11 (Jul 2017).https://doi.org/10.1186/s12983-017-0215-zTalia Y. Moore, Kimberly L. Cooper, Andrew A. Biewener, Ramanarayan Vasudevan Unpredictability of escape trajectory explains predator evasion ability and microhabitat preference of desert rodents, Nature Communications 8, no.11 (Sep 2017).https://doi.org/10.1038/s41467-017-00373-2Grace A Freymiller, Malachi D Whitford, Timothy E Higham, Rulon W Clark Recent interactions with snakes enhance escape performance of desert kangaroo rats (Rodentia: Heteromyidae) during simulated attacks, Biological Journal of the Linnean Society 122, no.33 (Sep 2017): 651–660.https://doi.org/10.1093/biolinnean/blx091Malachi D. Whitford, Grace A. Freymiller, Rulon W. Clark Avoiding the serpent's tooth: predator–prey interactions between free-ranging sidewinder rattlesnakes and desert kangaroo rats, Animal Behaviour 130 (Aug 2017): 73–78.https://doi.org/10.1016/j.anbehav.2017.06.004Rulon W. Clark, Scott W. Dorr, Malachi D. Whitford, Grace A. Freymiller, Steven R. Hein Comparison of anti-snake displays in the sympatric desert rodents Xerospermophilus tereticaudus (round-tailed ground squirrels) and Dipodomys deserti (desert kangaroo rats), Journal of Mammalogy 97, no.66 (Aug 2016): 1709–1717.https://doi.org/10.1093/jmammal/gyw137G. A. Cordero, C. M. Berns A test of Darwin's ‘lop-eared’ rabbit hypothesis, Journal of Evolutionary Biology 29, no.1111 (Jul 2016): 2102–2110.https://doi.org/10.1111/jeb.12938Burt P. Kotler, Joel S. Brown, Sonny S. Bleicher, Keren Embar Intercontinental-wide consequences of compromise-breaking adaptations: the case of desert rodents, Israel Journal of Ecology & Evolution 62, no.3-43-4 (Aug 2016): 186–195.https://doi.org/10.1080/15659801.2015.1125832David Rozen-Rechels, Stéphane Peigné, Damien Germain, Sandrine Ladevèze Intraspecific morphological variation of the middle ear in the European badger, Meles meles (Carnivora: Mustelidae), Biological Journal of the Linnean Society 119, no.11 (Mar 2016): 106–116.https://doi.org/10.1111/bij.12800Christopher P. Kofron, Francis X. Villablanca Decline of the Endangered Morro Bay Kangaroo Rat in California, Journal of Fish and Wildlife Management 7, no.11 (Mar 2016): 237–254.https://doi.org/10.3996/102014-JFWM-078Aidan A. Ruth, Mary Ann Raghanti, Richard S. Meindl, C. Owen Lovejoy Locomotor pattern fails to predict foramen magnum angle in rodents, strepsirrhine primates, and marsupials, Journal of Human Evolution 94 (May 2016): 45–52.https://doi.org/10.1016/j.jhevol.2016.01.003Matthew J. Mason Structure and function of the mammalian middle ear. I: Large middle ears in small desert mammals, Journal of Anatomy 228, no.22 (Jun 2015): 284–299.https://doi.org/10.1111/joa.12313Adriana de Arruda Bueno, José Carlos Motta-Junior Behavioural and morphological strategies by small savannah rodents to avoid predation, Mammalian Biology 80, no.55 (Sep 2015): 401–408.https://doi.org/10.1016/j.mambio.2015.05.005Matthew J. Mason Functional morphology of rodent middle ears, (Aug 2015): 373–404.https://doi.org/10.1017/CBO9781107360150.015Breanna J. Putman, Rulon W. Clark The fear of unseen predators: ground squirrel tail flagging in the absence of snakes signals vigilance, Behavioral Ecology 26, no.11 (Oct 2014): 185–193.https://doi.org/10.1093/beheco/aru176Arthur N. Popper From Cave Fish to Pile Driving: A Tail of Fish Bioacoustics, (Feb 2014): 467–492.https://doi.org/10.1007/978-1-4614-9102-6_25Katie L. Willis, Jakob Christensen-Dalsgaard, Darlene R. Ketten, Catherine E. Carr, Andrew Iwaniuk Middle Ear Cavity Morphology Is Consistent with an Aquatic Origin for Testudines, PLoS ONE 8, no.11 (Jan 2013): e54086.https://doi.org/10.1371/journal.pone.0054086Rulon W. Clark, Sean Tangco, Matthew A. Barbour Field video recordings reveal factors influencing predatory strike success of free-ranging rattlesnakes (Crotalus spp.), Animal Behaviour 84, no.11 (Jul 2012): 183–190.https://doi.org/10.1016/j.anbehav.2012.04.029Juan José Martínez, Valeria Di Cola Geographic distribution and phenetic skull variation in two close species of Graomys (Rodentia, Cricetidae, Sigmodontinae), Zoologischer Anzeiger - A Journal of Comparative Zoology 250, no.33 (Sep 2011): 175–194.https://doi.org/10.1016/j.jcz.2011.03.001Julien Louys, Ken Aplin, Robin M.D. Beck, Michael Archer Cranial anatomy of Oligo-Miocene koalas (Diprotodontia: Phascolarctidae): stages in the evolution of an extreme leaf-eating specialization, Journal of Vertebrate Paleontology 29, no.44 (Dec 2009): 981–992.https://doi.org/10.1671/039.029.0412J. Liao, Z. Zhang, N. Liu Effects of altitudinal change on the auditory bulla in Ochotona daurica (Mammalia, Lagomorpha), Journal of Zoological Systematics and Evolutionary Research 45, no.22 (May 2007): 151–154.https://doi.org/10.1111/j.1439-0469.2006.00401.xJohn J. Rosowski, Michael E. Ravicz, Jocelyn E. Songer Structures that contribute to middle-ear admittance in chinchilla, Journal of Comparative Physiology A 192, no.1212 (Aug 2006): 1287–1311.https://doi.org/10.1007/s00359-006-0159-9FREDERICK B. STANGL, MICHAEL M. SHIPLEY, JIM R. GOETZE, CLYDE JONES Comments on the Predator-Prey Relationship of the Texas Kangaroo Rat (Dipodomys elator) and Barn Owl (Tyto alba), The American Midland Naturalist 153, no.11 (Jan 2005): 135–141.https://doi.org/10.1674/0003-0031(2005)153[0135:COTPRO]2.0.CO;2Cristian Eric Schleich, Aldo Ivan Vassallo BULLAR VOLUME IN SUBTERRANEAN AND SURFACE-DWELLING CAVIOMORPH RODENTS, Journal of Mammalogy 84, no.11 (Feb 2003): 185–189.https://doi.org/10.1644/1545-1542(2003)084<0185:BVISAS>2.0.CO;2M. J. Mason Middle ear structures in fossorial mammals: a comparison with non‐fossorial species, Journal of Zoology 255, no.44 (Feb 2006): 467–486.https://doi.org/10.1017/S0952836901001558JOHN H. WAHLERT Morphology of the Auditory Region in Paramys copei and Other Eocene Rodents from North America, American Museum Novitates 3307 (Dec 2000): 1–16.https://doi.org/10.1206/0003-0082(2000)307<0001:MOTARI>2.0.CO;2Richard J. Sherwood Pneumatic processes in the temporal bone of chimpanzee (Pan troglodytes) and gorilla (Gorilla gorilla), Journal of Morphology 241, no.22 (Aug 1999): 127–137.https://doi.org/10.1002/(SICI)1097-4687(199908)241:2<127::AID-JMOR3>3.0.CO;2-PDietrich W.F. Schwarz, Ernest Puil Firing properties of spherical bushy cells in the anteroventral cochlear nucleus of the gerbil, Hearing Research 114, no.1-21-2 (Dec 1997): 127–138.https://doi.org/10.1016/S0378-5955(97)00162-7Lawrence M. Witmer The Evolution of the Antorbital Cavity of Archosaurs: A Study in Soft-Tissue Reconstruction in the Fossil Record with an Analysis of the Function of Pneumaticity, Journal of Vertebrate Paleontology 17, no.sup001sup001 (Apr 1997): 1–76.https://doi.org/10.1080/02724634.1997.10011027Michael D. McGinn, Brian T. Faddis Kangaroo rats exhibit spongiform degeneration of the central auditory system similar to that found in gerbils, Hearing Research 104, no.1-21-2 (Feb 1997): 90–100.https://doi.org/10.1016/S0378-5955(96)00177-3Jan A. Randall, Susan M. Hatch, Evon R. Hekkala Inter-specific variation in anti-predator behavior in sympatric species of kangaroo rat, Behavioral Ecology and Sociobiology 36, no.44 (Apr 1995): 243–250.https://doi.org/10.1007/BF00165833Rickye S. Heffner, Henry E. Heffner, Christopher Contos, Dara Kearns Hearing in prairie dogs: Transition between surface and subterranean rodents, Hearing Research 73, no.22 (Mar 1994): 185–189.https://doi.org/10.1016/0378-5955(94)90233-XJohn J. Rosowski Outer and Middle Ears, (Jan 1994): 172–247.https://doi.org/10.1007/978-1-4612-2700-7_6Michael A. Mares Desert Rodents, Seed Consumption, and Convergence, BioScience 43, no.66 (Jun 1993): 372–379.https://doi.org/10.2307/1312045R. M. Joeckel Comparative anatomy and function of the leptaucheniine oreodont middle ear, Journal of Vertebrate Paleontology 12, no.44 (Dec 1992): 505–523.https://doi.org/10.1080/02724634.1992.10011477Martin Daly, Philip R. Behrends, Margo I. Wilson, Lucia F. Jacobs Behavioural modulation of predation risk: moonlight avoidance and crepuscular compensation in a nocturnal desert rodent, Dipodomys merriami, Animal Behaviour 44, no.11 (Jul 1992): 1–9.https://doi.org/10.1016/S0003-3472(05)80748-1Carl Gans An Overview of the Evolutionary Biology of Hearing, (Jan 1992): 3–13.https://doi.org/10.1007/978-1-4612-2784-7_1Douglas B. Webster, Wolfgang Plassmann Parallel Evolution of Low-Frequency Sensitivity in Old World and New World Desert Rodents, (Jan 1992): 633–636.https://doi.org/10.1007/978-1-4612-2784-7_39Michael D McGinn, Brian T Faddis, H.Christopher Moore Acoustic isolation reduces degeneration of the ventral cochlear nuclei in mongolian gerbils, Hearing Research 48, no.33 (Oct 1990): 265–274.https://doi.org/10.1016/0378-5955(90)90066-XMartin Daly, Margo Wilson, Philip R. Behrends, Lucia F. Jacobs Characteristics of kangaroo rats, Dipodomys merriami, associated with differential predation risk, Animal Behaviour 40, no.22 (Aug 1990): 380–389.https://doi.org/10.1016/S0003-3472(05)80934-0Jan A. Randall Individual footdrumming signatures in banner-tailed kangaroo rats Dipodomys spectabilis, Animal Behaviour 38, no.44 (Oct 1989): 620–630.https://doi.org/10.1016/S0003-3472(89)80007-7Mark S. Springer, Michael O. Woodburne The distribution of some basicranial characters within the Marsupialia and a phylogeny of the Phalangeriformes, Journal of Vertebrate Paleontology 9, no.22 (Jun 1989): 210–221.https://doi.org/10.1080/02724634.1989.10011755Andrew A. Biewener, Reinhard Blickhan Kangaroo Rat Locomotion: Design for Elastic Energy Storage or Acceleration ?, Journal of Experimental Biology 140, no.11 (Nov 1988): 243–255.https://doi.org/10.1242/jeb.140.1.243Joel S. Brown, Burt P. Kotler, Rosemary J. Smith, William O. Wirtz The effects of owl predation on the foraging behavior of heteromyid rodents, Oecologia 76, no.33 (Aug 1988): 408–415.https://doi.org/10.1007/BF00377036A.M. Brown Acoustic distortion from rodent ears: A comparison of responses from rats, guinea pigs and gerbils, Hearing Research 31, no.11 (Nov 1987): 25–37.https://doi.org/10.1016/0378-5955(87)90211-5Jan A. Randall, Claudia M. Stevens Footdrumming and other anti-predator responses in the bannertail kangaroo rat (Dipodomys spectabilis), Behavioral Ecology and Sociobiology 20, no.33 (Mar 1987): 187–194.https://doi.org/10.1007/BF00299732DAVID J. PACKER The influence of carotid arterial sounds on hearing sensitivity in mammals, Journal of Zoology 211, no.33 (Mar 2009): 547–560.https://doi.org/10.1111/j.1469-7998.1987.tb01552.xM. McDonogh The middle ear transformer mechanism: man versus mouse, The Journal of Laryngology & Otology 100, no.11 (Jun 2007): 15–20.https://doi.org/10.1017/S0022215100098686Jan A. Randall Territorial defense and advertisement by footdrumming in bannertail kangaroo rats (Dipodomys spectabilis) at high and low population densities, Behavioral Ecology and Sociobiology 16, no.11 (Nov 1984): 11–20.https://doi.org/10.1007/BF00293099Douglas B. Webster, Molly Webster The Specialized Auditory System of Kangaroo Rats, (Jan 1984): 161–196.https://doi.org/10.1016/B978-0-12-151808-0.50012-5Bayard H. Brattstrom, Michael C. Bondello Effects of Off-Road Vehicle Noise on Desert Vertebrates, (Jan 1983): 167–206.https://doi.org/10.1007/978-1-4612-5454-6_9A. Tumarkin Bimodal hearing, the controversial second filter, and the mystery of the missing OHC afferents, The Journal of Laryngology & Otology 96, no.44 (Jun 2007): 297–308.https://doi.org/10.1017/S0022215100092549Wilma George Species‐typical calls in the Ctenodactylidae (Rodentia), Journal of Zoology 195, no.11 (Aug 2009): 39–52.https://doi.org/10.1111/j.1469-7998.1981.tb01892.xSteven D. Thompson, Richard E. MacMillen, Elaine M. Burke, C. Richard Taylor The energetic cost of bipedal hopping in small mammals, Nature 287, no.57795779 (Sep 1980): 223–224.https://doi.org/10.1038/287223a0Robert M. Hunt, William W. Korth The auditory region of dermoptera: Morphology and function relative to other living mammals, Journal of Morphology 164, no.22 (May 1980): 167–211.https://doi.org/10.1002/jmor.1051640206A. Tumarkin A New Theory of Cochlear Function Part Ii, British Journal of Audiology 13, no.11 (Oct 2009): 15–18.https://doi.org/10.3109/03005367909078870 Skull asymmetry, ear structure and function, and auditory localization in Tengmalm’s owl, Aegolius funereus (Linné), Philosophical Transactions of the Royal Society of London. B, Biological Sciences 282, no.991991 (Jan 1997): 325–410.https://doi.org/10.1098/rstb.1978.0014R. A. Suthers Sensory Ecology of Mammals, (Jan 1978): 253–287.https://doi.org/10.1007/978-1-4684-3363-0_11Edwin W. Rubel Ontogeny of Structure and Function in the Vertebrate Auditory System, (Jan 1978): 135–237.https://doi.org/10.1007/978-3-642-66880-7_5MICHAEL J. NOVACEK Aspects of the problem of variation, origin and evolution of the eutherian auditory bulla, Mammal Review 7, no.3-43-4 (Sep 1977): 131–150.https://doi.org/10.1111/j.1365-2907.1977.tb00366.xDouglas B. Webster, Molly Webster Auditory systems of heteromyidae: Cochlear diversity, Journal of Morphology 152, no.22 (May 1977): 153–169.https://doi.org/10.1002/jmor.1051520203Douglas B. Webster, Molly Webster Auditory systems of Heteromyidae: Functional morphology and evolution of the middle ear, Journal of Morphology 146, no.33 (Jul 1975): 343–376.https://doi.org/10.1002/jmor.1051460304Douglas B. Webster Auditory systems of Heteromyidae: Postnatal development of the ear ofDipodomys merriami, Journal of Morphology 146, no.33 (Jul 1975): 377–393.https://doi.org/10.1002/jmor.1051460305J. F. Eisenberg The Behavior Patterns of Desert Rodents, (Jan 1975): 189–224.https://doi.org/10.1007/978-94-010-1944-6_10M. L. Rosenzweig, Barbara Smigel, A. Kraft Patterns of Food, Space and Diversity, (Jan 1975): 241–268.https://doi.org/10.1007/978-94-010-1944-6_12A.M. BROWN, J.D. PYE Auditory Sensitivity at High Frequencies in Mammals, (Jan 1975): 1–73.https://doi.org/10.1016/B978-0-12-011506-8.50007-XRobert M. Hunt The auditory bulla in carnivora: An anatomical basis for reappraisal of carnivore evolution, Journal of Morphology 143, no.11 (May 1974): 21–75.https://doi.org/10.1002/jmor.1051430103O. W. Henson Comparative Anatomy of the Middle Ear, (Jan 1974): 39–110.https://doi.org/10.1007/978-3-642-65829-7_3Douglas M. Lay The anatomy, physiology, functional significance and evolution of specialized hearing organs of gerbilline rodents, Journal of Morphology 138, no.11 (Sep 1972): 41–120.https://doi.org/10.1002/jmor.1051380103O. A. Reig, G. G. Simpson Sparassocynus (Marsupialia, Didelphidae), a peculiar mammal from the late Cenozoic of Argentina, Journal of Zoology 167, no.44 (Aug 2009): 511–539.https://doi.org/10.1111/j.1469-7998.1972.tb01742.x Jack Vernon , Paul Herman , and Ernest Peterson Cochlear Potentials in the Kangaroo Rat, Dipodomys merriami, Physiological Zoology 44, no.22 (Sep 2015): 112–118.https://doi.org/10.1086/physzool.44.2.30155562Carol R. Stack, D. B. Webster Histocytochemical Pattern of Enzyme Distribution in Cochlea of the Kangaroo Rat ( D. Spectabilis ) at Rest and Following Auditory Stimulation, Acta Oto-Laryngologica 72, no.1-61-6 (Jul 2009): 28–35.https://doi.org/10.3109/00016487109122452Carol R. Stack, D. B. Webster Glycogen Content in the Outer Hair Cells of Kangaroo Rat ( D. Spectabilis ) Cochlea Prior to and Following Auditory Stimulation, Acta Oto-Laryngologica 71, no.1-61-6 (Jul 2009): 483–493.https://doi.org/10.3109/00016487109125392Allen L. Rupert, George Moushegian Neuronal responses of kangaroo rat ventral cochlear nucleus to low-frequency tones, Experimental Neurology 26, no.11 (Jan 1970): 84–102.https://doi.org/10.1016/0014-4886(70)90090-7Douglas B. Webster, Robert F. Ackermann, Giampaolo C. Longa Central auditory system of the kangaroo rat,Dipodomys merriami, The Journal of Comparative Neurology 133, no.44 (Aug 1968): 477–493.https://doi.org/10.1002/cne.901330407F. Eisenberg Nagetier-Territorien und -Wechsel, (Jan 1967): 83–101.https://doi.org/10.1007/978-3-663-02244-2_8

Referência(s)
Altmetric
PlumX