Temperature Selection by Amphibian Larvae
1967; University of Chicago Press; Volume: 40; Issue: 2 Linguagem: Inglês
10.1086/physzool.40.2.30152451
ISSN1937-4267
AutoresEdgar A. Lucas, W. Ann Reynolds,
Tópico(s)Species Distribution and Climate Change
ResumoPrevious articleNext article No AccessTemperature Selection by Amphibian LarvaeEdgar A. Lucas and W. Ann ReynoldsEdgar A. Lucas and W. Ann ReynoldsPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 40, Number 2Apr., 1967 Article DOIhttps://doi.org/10.1086/physzool.40.2.30152451 Views: 14Total views on this site Citations: 45Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1967 University of ChicagoPDF download Crossref reports the following articles citing this article:E. A. Sanabria, E. González, L. B. Quiroga, M. Tejedo Vulnerability to warming in a desert amphibian tadpole community: the role of interpopulational variation, Journal of Zoology 313, no.44 (Dec 2020): 283–296.https://doi.org/10.1111/jzo.12850Andrea N. Drayer, Jacquelyn C. Guzy, Rachel Caro, Steven J. Price Created wetlands managed for hydroperiod provide habitat for amphibians in Western Kentucky, USA, Wetlands Ecology and Management 28, no.33 (Jun 2020): 543–558.https://doi.org/10.1007/s11273-020-09730-3Katharina Ruthsatz, Kathrin H. Dausmann, Steffen Reinhardt, Tom Robinson, Nikita M. Sabatino, Myron A. Peck, Julian Glos Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria, Journal of Comparative Physiology B 190, no.33 (Mar 2020): 297–315.https://doi.org/10.1007/s00360-020-01271-8Katharina Ruthsatz, Kathrin H. Dausmann, Claudia Drees, Laura I. Becker, Lisa Hartmann, Janica Reese, Steffen Reinhardt, Tom Robinson, Nikita M. Sabatino, Myron A. Peck, Julian Glos Altered thyroid hormone levels affect the capacity for temperature-induced developmental plasticity in larvae of Rana temporaria and Xenopus laevis, Journal of Thermal Biology 90 (May 2020): 102599.https://doi.org/10.1016/j.jtherbio.2020.102599Katharina Ruthsatz, Kathrin H Dausmann, Steffen Reinhardt, Tom Robinson, Nikita M Sabatino, Myron A Peck, Julian Glos Endocrine Disruption Alters Developmental Energy Allocation and Performance in Rana temporaria, Integrative and Comparative Biology 59, no.11 (May 2019): 70–88.https://doi.org/10.1093/icb/icz041Katharina Ruthsatz, Kathrin H. Dausmann, Claudia Drees, Laura I. Becker, Lisa Hartmann, Janica Reese, Nikita M. Sabatino, Myron A. Peck, Julian Glos Altered thyroid hormone levels affect body condition at metamorphosis in larvae of Xenopus laevis, Journal of Applied Toxicology 38, no.1111 (Jul 2018): 1416–1425.https://doi.org/10.1002/jat.3663Katharina Ruthsatz, Kathrin H Dausmann, Myron A Peck, Claudia Drees, Nikita M Sabatino, Laura I Becker, Janica Reese, Lisa Hartmann, Julian Glos, Steven Cooke Thyroid hormone levels and temperature during development alter thermal tolerance and energetics of Xenopus laevis larvae, Conservation Physiology 6, no.11 (Nov 2018).https://doi.org/10.1093/conphys/coy059Sanja Drakulić, Heike Feldhaar, Duje Lisičić, Mia Mioč, Ivan Cizelj, Michael Seiler, Theresa Spatz, Mark-Oliver Rödel Local differences of thermal preferences in European common frog (Rana temporaria Linnaeus, 1758) tadpoles, Zoologischer Anzeiger 268 (May 2017): 47–54.https://doi.org/10.1016/j.jcz.2017.04.005Jeffrey A. Goldstein, Karin von Seckendorr Hoff, Stanley D. Hillyard The effect of temperature on development and behaviour of relict leopard frog tadpoles, Conservation Physiology 5, no.11 (Feb 2017).https://doi.org/10.1093/conphys/cow075Tyler D. Hoskins, Michelle D. Boone Evaluating the Need for Supplemental Shallow Water Access for Amphibians Reared in Mesocosms, Copeia 103, no.22 (Jul 2015): 369–377.https://doi.org/10.1643/CH-14-120Daniel Escoriza, Jihène Ben Hassine Niche Partitioning at Local and Regional Scale in the North African Salamandridae, Journal of Herpetology 49, no.22 (Jun 2015): 276–283.https://doi.org/10.1670/13-151Meher Bellakhal, André Neveu, Lotfi Aleya Artificial wetlands as a solution to the decline in the frog population: Estimation of their suitability through the study of population dynamics of Sahara Frogs in hill lakes, Ecological Engineering 63 (Feb 2014): 114–121.https://doi.org/10.1016/j.ecoleng.2013.12.029ME Cuello, CA Úbeda, MT Bello, MG Perotti Plastic patterns in larval development of Endangered endemic Atelognathus patagonicus: implications for conservation strategies, Endangered Species Research 23, no.11 (Jan 2014): 83–92.https://doi.org/10.3354/esr00550Vojtěch Marek, Lumír Gvoždík The insensitivity of thermal preferences to various thermal gradient profiles in newts, Journal of Ethology 30, no.11 (Jun 2011): 35–41.https://doi.org/10.1007/s10164-011-0287-8V. B. Verbitskii, T. I. Verbitskaya Final thermal preference in parthenogenetic females of Daphnia magna straus (Crustacea: Cladocera) acclimated to various temperatures, Biology Bulletin 38, no.55 (Sep 2011): 493–499.https://doi.org/10.1134/S1062359011050165Catherine Laura Searle, Lisa K. Belden, Betsy A. Bancroft, Barbara A. Han, Lindsay M. Biga, Andrew R. Blaustein Experimental examination of the effects of ultraviolet-B radiation in combination with other stressors on frog larvae, Oecologia 162, no.11 (Aug 2009): 237–245.https://doi.org/10.1007/s00442-009-1440-8BETSY A. BANCROFT, NICK J. BAKER, ANDREW R. BLAUSTEIN A Meta-Analysis of the Effects of Ultraviolet B Radiation and Its Synergistic Interactions with pH, Contaminants, and Disease on Amphibian Survival, Conservation Biology 22, no.44 (Jul 2008): 987–996.https://doi.org/10.1111/j.1523-1739.2008.00966.xTereza Vinšálková, Lumír Gvoždík Mismatch between temperature preferences and morphology in F1 hybrid newts (Triturus carnifex×T. dobrogicus), Journal of Thermal Biology 32, no.7-87-8 (Oct 2007): 433–439.https://doi.org/10.1016/j.jtherbio.2007.09.001Hua-Jun Wu, Chiung-Fen Yen, Yeong-Choy Kam Metabolic compensation and behavioral thermoregulation of subtropical rhacophorid (Polypedates megacephalus) tadpoles in container habitats, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 146, no.11 (Jan 2007): 101–106.https://doi.org/10.1016/j.cbpb.2006.09.005Chi-Shiun Wu, Yeong-Choy Kam THERMAL TOLERANCE AND THERMOREGULATION BY TAIWANESE RHACOPHORID TADPOLES (BUERGERIA JAPONICA) LIVING IN GEOTHERMAL HOT SPRINGS AND STREAMS, Herpetologica 61, no.11 (Mar 2005): 35–46.https://doi.org/10.1655/04-50Evelyn Satinoff Behavioral Thermoregulation in the Cold, (Jan 2011): 481–505.https://doi.org/10.1002/cphy.cp040121Karen P. Grant, Lawrence E. Licht Effects of ultraviolet radiation on life-history stages of anurans from Ontario, Canada, Canadian Journal of Zoology 73, no.1212 (Dec 1995): 2292–2301.https://doi.org/10.1139/z95-271 Larry I. Crawshaw , Richard N. Rausch , Lonnie P. Wollmuth , and Ethan J. Bauer Seasonal Rhythms of Development and Temperature Selection in Larval Bullfrogs, Rana catesbeiana Shaw, Physiological Zoology 65, no.22 (Sep 2015): 346–359.https://doi.org/10.1086/physzool.65.2.30158257Bruno Viertel The ontogeny of the filter apparatus of anuran larvae (Amphibia, Anura), Zoomorphology 110, no.55 (Sep 1991): 239–266.https://doi.org/10.1007/BF01633098Lynnette M. Sievert Thermoregulatory behaviour in the toads Bufo marinus and Bufo cognatus, Journal of Thermal Biology 16, no.55 (Sep 1991): 309–312.https://doi.org/10.1016/0306-4565(91)90023-UYves Rossetti, Luc Rossetti, Michel Cabanac Annual oscillation of preferred temperature in the freshwater snail Lymnaea auricularia: effect of light and temperature, Animal Behaviour 37 (Jun 1989): 897–907.https://doi.org/10.1016/0003-3472(89)90133-4Larry Crawshaw, Dennis Grahn, Lonnie Wollmuth, Leonard Simpson Central nervous regulation of body temperature in vertebrates: Comparative aspects, Pharmacology & Therapeutics 30, no.11 (Jan 1985): 19–30.https://doi.org/10.1016/0163-7258(85)90045-2Tsukuda Hiroko, Ogoshi Kumiko A temperature gradient apparatus and temperature preference of the thermally acclimated planarian, Dugesia japonica, Comparative Biochemistry and Physiology Part A: Physiology 82, no.44 (Jan 1985): 805–807.https://doi.org/10.1016/0300-9629(85)90486-4David H. Nelson, Deborah K. Hooper Thermal tolerance and preference of the freshwater shrimp Palaemonetes kadiakensis, Journal of Thermal Biology 7, no.33 (Jul 1982): 183–187.https://doi.org/10.1016/0306-4565(82)90009-2C Willhite, P.V Cupp Daily rhythms of thermal tolerance in Rana clamitans (Anura: Ranidae) tadpoles, Comparative Biochemistry and Physiology Part A: Physiology 72, no.11 (Jan 1982): 255–257.https://doi.org/10.1016/0300-9629(82)90042-1Joseph D. Maness, Victor H. Hutchison Acute adjustment of thermal tolerance in vertebrate ectotherms following exposure to critical thermal maxima, Journal of Thermal Biology 5, no.44 (Oct 1980): 225–233.https://doi.org/10.1016/0306-4565(80)90026-1 Elizabeth Marshall , and Gordon C. Grigg Lack of Metabolic Acclimation to Different Thermal Histories by Tadpoles of Limnodynastes peroni (Anura: Leptodactylidae), Physiological Zoology 53, no.11 (Sep 2015): 1–7.https://doi.org/10.1086/physzool.53.1.30155768Elizabeth Sherman Ontogenetic change in thermal tolerance of the toad Bufo woodhousii fowleri, Comparative Biochemistry and Physiology Part A: Physiology 65, no.22 (Jan 1980): 227–230.https://doi.org/10.1016/0300-9629(80)90229-7Kevin T. Kowalski, Joseph P. Schubauer, Cindy L. Scott, James R. Spotila Interspecific and seasonal differences in the temperature tolerance of stream fish, Journal of Thermal Biology 3, no.33 (Jul 1978): 105–108.https://doi.org/10.1016/0306-4565(78)90001-3Martha E. Casterlin, William W. Reynolds Behavioural thermoregulation in Rana pipiens tadpoles, Journal of Thermal Biology 3, no.33 (Jul 1978): 143–145.https://doi.org/10.1016/0306-4565(78)90009-8V.H. Hutchison, L.G. Hill Thermal selection of bullfrog tadpoles (rana catesbeiana) at different stages of development and acclimation tempeatures, Journal of Thermal Biology 3, no.22 (Apr 1978): 57–60.https://doi.org/10.1016/0306-4565(78)90038-4Cynthia Carey Factors affecting body temperatures of toads, Oecologia 35, no.22 (Jan 1978): 197–219.https://doi.org/10.1007/BF00344732F. Reed Hainsworth, Larry L. Wolf THE ECONOMICS OF TEMPERATURE REGULATION AND TORPOR IN NONMAMMALIAN ORGANISMS, (Jan 1978): 147–184.https://doi.org/10.1016/B978-0-12-734550-5.50010-7M.E. Casterlin, W.W. Reynolds Behavioral fever in anuran amphibian larvae, Life Sciences 20, no.44 (Feb 1977): 593–596.https://doi.org/10.1016/0024-3205(77)90461-1Martin E. Feder, F. Harvey Pough Temperature selection by the red-backed salamander, Plethodon C. cinereus (Green) (Caudata: Plethodontidae), Comparative Biochemistry and Physiology Part A: Physiology 50, no.11 (Jan 1975): 91–98.https://doi.org/10.1016/S0010-406X(75)80207-6Mitsuru Kuramoto Adaptive significance in oxygen consumption of frog embryos in relation to the environmental temperatures, Comparative Biochemistry and Physiology Part A: Physiology 52, no.11 (Jan 1975): 59–62.https://doi.org/10.1016/S0300-9629(75)80127-7S.N. Salthe, J.S. Mecham REPRODUCTIVE AND COURTSHIP PATTERNS, (Jan 1974): 309–521.https://doi.org/10.1016/B978-0-12-455402-3.50010-3E.D. Stevens The evolution of endothermy, Journal of Theoretical Biology 38, no.33 (Mar 1973): 597–611.https://doi.org/10.1016/0022-5193(73)90260-9Harvey B. Lillywhite Temperature selection by the bullfrog, Rana catesbeiana, Comparative Biochemistry and Physiology Part A: Physiology 40, no.11 (Sep 1971): 213–227.https://doi.org/10.1016/0300-9629(71)90162-9 Konrad Bachmann Temperature Adaptations of Amphibian Embryos, The American Naturalist 103, no.930930 (Oct 2015): 115–130.https://doi.org/10.1086/282588
Referência(s)