The Effects of Temperature on the Durations of the Developmental Stages of Drosophila melanogaster

1935; University of Chicago Press; Volume: 8; Issue: 4 Linguagem: Inglês

10.1086/physzool.8.4.30151263

ISSN

1937-4267

Autores

Louis Powsner,

Tópico(s)

Neurobiology and Insect Physiology Research

Resumo

Previous articleNext article No AccessThe Effects of Temperature on the Durations of the Developmental Stages of Drosophila melanogasterLouis PowsnerLouis PowsnerPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by Volume 8, Number 4Oct., 1935 Article DOIhttps://doi.org/10.1086/physzool.8.4.30151263 Views: 46Total views on this site Citations: 86Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). PDF download Crossref reports the following articles citing this article:Aidan P.C. Dermady, Dionna L. DeFazio, Emily M. Hensley, Daniel L. Ruiz, Alejandra D. Chavez, Sarah A. Iannone, Niall M. Dermady, Lexis V. Grandel, Alexis S. Hill Neuronal excitability modulates developmental time of Drosophila melanogaster, Developmental Biology 508 (Apr 2024): 38–45.https://doi.org/10.1016/j.ydbio.2024.01.006Sophie A Fleck, Puja Biswas, Emily D DeWitt, Rebecca L Knuteson, Robert C Eisman, Travis Nemkov, Angelo D'Alessandro, Jason M Tennessen, Elizabeth Rideout, Lesley N Weaver Auxin exposure disrupts feeding behavior and fatty acid metabolism in adult Drosophila, eLife 12 (Jan 2024).https://doi.org/10.7554/eLife.91953.3Sophie A Fleck, Puja Biswas, Emily D DeWitt, Rebecca L Knuteson, Robert C Eisman, Travis Nemkov, Angelo D'Alessandro, Jason M Tennessen, Elizabeth Rideout, Lesley N Weaver Auxin exposure disrupts feeding behavior and fatty acid metabolism in adult Drosophila, eLife 12 (Jan 2024).https://doi.org/10.7554/eLife.91953Anuttama Kulkarni, Sumali Pandey Developing a faculty support program for fostering enriching undergraduate laboratory experiences under limited resource conditions, Journal of Microbiology & Biology Education 24, no.33 (Dec 2023).https://doi.org/10.1128/jmbe.00141-23Patrícia Severino, J. Dias-Ferreira, Luciana N. Andrade, Daniele M. Lima, Luciana M. de Hollanda, Classius F. da Silva, Marco Vinicius Chaud, Claudia Carbone, Amélia M. Silva, Massimo Lucarini, Alessandra Durazzo, Raffaele Capasso, Antonello Santini, Eliana B. Souto Toxicological screening of nanoparticles for biological applications: Drosophila melanogaster as a representative toxicological model, (Jan 2023): 551–573.https://doi.org/10.1016/B978-0-323-90471-1.00007-4Ana Cabrita, Alexandra M. Medeiros, Telmo Pereira, António Sebastião Rodrigues, Michel Kranendonk, César S. Mendes Motor dysfunction in Drosophila melanogaster as a biomarker for developmental neurotoxicity, iScience 25, no.77 (Jul 2022): 104541.https://doi.org/10.1016/j.isci.2022.104541Bénédicte M. Lefèvre, Stecy Mienanzambi, Michael Lang Developmental timing of Drosophila pachea pupae is robust to temperature changes, Journal of Thermal Biology 106 (May 2022): 103232.https://doi.org/10.1016/j.jtherbio.2022.103232Melinda K. Matthews, Jaanna Malcolm, John M. Chaston, Silvia Bulgheresi, William Ludington Microbiota Influences Fitness and Timing of Reproduction in the Fruit Fly Drosophila melanogaster, Microbiology Spectrum 9, no.22 (Oct 2021).https://doi.org/10.1128/Spectrum.00034-21Wolf U. Blanckenhorn, David Berger, Patrick T. Rohner, Martin A. Schäfer, Hiroshi Akashi, Richard J. Walters Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature-size-rule, Journal of Thermal Biology 100 (Aug 2021): 103069.https://doi.org/10.1016/j.jtherbio.2021.103069Joseph Crapse, Nishant Pappireddi, Meera Gupta, Stanislav Y Shvartsman, Eric Wieschaus, Martin Wühr Evaluating the Arrhenius equation for developmental processes, Molecular Systems Biology 17, no.88 (Aug 2021).https://doi.org/10.15252/msb.20209895Claire M. Gillette, Jason M. Tennessen, Tânia Reis Balancing energy expenditure and storage with growth and biosynthesis during Drosophila development, Developmental Biology 475 (Jul 2021): 234–244.https://doi.org/10.1016/j.ydbio.2021.01.019Christen K. Mirth, Timothy E. Saunders, Christopher Amourda Growing Up in a Changing World: Environmental Regulation of Development in Insects, Annual Review of Entomology 66, no.11 (Jan 2021): 81–99.https://doi.org/10.1146/annurev-ento-041620-083838Nagaraju Dhanyasi, K. VijayRaghavan, Ben‐Zion Shilo, Eyal D. Schejter Microtubules provide guidance cues for myofibril and sarcomere assembly and growth, Developmental Dynamics 250, no.11 (Sep 2020): 60–73.https://doi.org/10.1002/dvdy.227Megan M. Hoover, Christopher Marks Short communication: Context matters: Adult size is contingent on embryonic temperature in Drosophila melanogaster, Journal of Thermal Biology 95 (Jan 2021): 102820.https://doi.org/10.1016/j.jtherbio.2020.102820Isabell Schumann, Tilman Triphan The PEDtracker: An Automatic Staging Approach for Drosophila melanogaster Larvae, Frontiers in Behavioral Neuroscience 14 (Dec 2020).https://doi.org/10.3389/fnbeh.2020.612313Sudhakar Krittika, Pankaj Yadav Circadian clocks: an overview on its adaptive significance, Biological Rhythm Research 51, no.77 (Mar 2019): 1109–1132.https://doi.org/10.1080/09291016.2019.1581480Luis F Sullivan, Timothy L Warren, Chris Q Doe Temporal identity establishes columnar neuron morphology, connectivity, and function in a Drosophila navigation circuit, eLife 8 (Feb 2019).https://doi.org/10.7554/eLife.43482E R Everman, P J Freda, M Brown, A J Schieferecke, G J Ragland, T J Morgan Ovary Development and Cold Tolerance of the Invasive Pest Drosophila suzukii (Matsumura) in the Central Plains of Kansas, United States, Environmental Entomology 47, no.44 (May 2018): 1013–1023.https://doi.org/10.1093/ee/nvy074Hélène Hinaux, Katharina Bachem, Margherita Battistara, Matteo Rossi, Yaqun Xin, Rita Jaenichen, Yann Le Poul, Laurent Arnoult, Johanna M. Kobler, Ilona C. Grunwald Kadow, Lisa Rodermund, Benjamin Prud'homme, Nicolas Gompel Revisiting the developmental and cellular role of the pigmentation gene yellow in Drosophila using a tagged allele, Developmental Biology 438, no.22 (Jun 2018): 111–123.https://doi.org/10.1016/j.ydbio.2018.04.003Michael S. Werner, Bogdan Sieriebriennikov, Tobias Loschko, Suryesh Namdeo, Masa Lenuzzi, Mohannad Dardiry, Tess Renahan, Devansh Raj Sharma, Ralf J. Sommer Environmental influence on Pristionchus pacificus mouth form through different culture methods, Scientific Reports 7, no.11 (Aug 2017).https://doi.org/10.1038/s41598-017-07455-7Kiel G. Ormerod, Olivia K. LePine, Prabhodh S. Abbineni, Justin M. Bridgeman, Jens R. Coorssen, A. Joffre Mercier, Glenn J. Tattersall Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition, Fly 11, no.33 (Mar 2017): 153–170.https://doi.org/10.1080/19336934.2017.1304331Mubarak Hussain Syed, Brandon Mark, Chris Q Doe Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity, eLife 6 (Apr 2017).https://doi.org/10.7554/eLife.26287Mads F. Schou, Torsten N. Kristensen, Anders Pedersen, B. Göran Karlsson, Volker Loeschcke, Anders Malmendal Metabolic and functional characterization of effects of developmental temperature in Drosophila melanogaster, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 312, no.22 (Feb 2017): R211–R222.https://doi.org/10.1152/ajpregu.00268.2016Richard A. Baines, Carlo N.G. Giachello, Wei-Hsiang Lin Drosophila, (Jan 2017): 345–358.https://doi.org/10.1016/B978-0-12-804066-9.00024-9Mark Leaver, Simone Kienle, Maria L. Begasse, Ralf J. Sommer, Anthony A. Hyman A locus in Pristionchus pacificus that is responsible for the ability to give rise to fertile offspring at higher temperatures, Biology Open 5, no.88 (Jul 2016): 1111–1117.https://doi.org/10.1242/bio.018127Jim A Mossman, Leann M Biancani, Chen-Tseh Zhu, David M Rand Mitonuclear Epistasis for Development Time and Its Modification by Diet in Drosophila, Genetics 203, no.11 (May 2016): 463–484.https://doi.org/10.1534/genetics.116.187286Leila E Rieder, Yiannis A Savva, Matthew A Reyna, Yao-Jen Chang, Jacquelyn S Dorsky, Ali Rezaei, Robert A Reenan Dynamic response of RNA editing to temperature in Drosophila, BMC Biology 13, no.11 (Jan 2015).https://doi.org/10.1186/s12915-014-0111-3Carlo N.G. Giachello, Richard A. Baines Inappropriate Neural Activity during a Sensitive Period in Embryogenesis Results in Persistent Seizure-like Behavior, Current Biology 25, no.2222 (Nov 2015): 2964–2968.https://doi.org/10.1016/j.cub.2015.09.040David Cheung, Jun Ma Probing the impact of temperature on molecular events in a developmental system, Scientific Reports 5, no.11 (Aug 2015).https://doi.org/10.1038/srep13124Andrew Bellemer Thermotaxis, circadian rhythms, and TRP channels in Drosophila, Temperature 2, no.22 (Feb 2015): 227–243.https://doi.org/10.1080/23328940.2015.1004972Justin Crocker, Namiko Abe, Lucrezia Rinaldi, Alistair P. McGregor, Nicolás Frankel, Shu Wang, Ahmad Alsawadi, Philippe Valenti, Serge Plaza, François Payre, Richard S. Mann, David L. Stern Low Affinity Binding Site Clusters Confer Hox Specificity and Regulatory Robustness, Cell 160, no.1-21-2 (Jan 2015): 191–203.https://doi.org/10.1016/j.cell.2014.11.041Steven G. Kuntz, Michael B. Eisen, Claude Desplan Drosophila Embryogenesis Scales Uniformly across Temperature in Developmentally Diverse Species, PLoS Genetics 10, no.44 (Apr 2014): e1004293.https://doi.org/10.1371/journal.pgen.1004293Luke A Hoekstra, Mohammad A Siddiq, Kristi L Montooth Pleiotropic Effects of a Mitochondrial–Nuclear Incompatibility Depend upon the Accelerating Effect of Temperature in Drosophila, Genetics 195, no.33 (Nov 2013): 1129–1139.https://doi.org/10.1534/genetics.113.154914Christine Lynn Sansone, Edward M. Blumenthal Developmental expression of drop-dead is required for early adult survival and normal body mass in Drosophila melanogaster, Insect Biochemistry and Molecular Biology 42, no.99 (Sep 2012): 690–698.https://doi.org/10.1016/j.ibmb.2012.06.002Narendra Mukherjee, Nisha N. Kannan, Pankaj Yadav, Vijay Kumar Sharma A model based on oscillatory threshold and build-up of a developmental substance explains gating of adult emergence in Drosophila melanogaster, Journal of Experimental Biology 215, no.1717 (Sep 2012): 2960–2968.https://doi.org/10.1242/jeb.071290Petros Damos, Matilda Savopoulou-Soultani Temperature-Driven Models for Insect Development and Vital Thermal Requirements, Psyche: A Journal of Entomology 2012 (Jan 2012): 1–13.https://doi.org/10.1155/2012/123405Erica C. Heinrich, Manoush Farzin, C. Jaco Klok, Jon F. Harrison The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster, Journal of Experimental Biology 214, no.99 (May 2011): 1419–1427.https://doi.org/10.1242/jeb.051904Nicolás Frankel, Gregory K. Davis, Diego Vargas, Shu Wang, François Payre, David L. Stern Phenotypic robustness conferred by apparently redundant transcriptional enhancers, Nature 466, no.73057305 (May 2010): 490–493.https://doi.org/10.1038/nature09158Heather L. D. Brown, James W. Truman Fine-tuning of secondary arbor development: the effects of the ecdysone receptor on the adult neuronal lineages of the Drosophila thoracic CNS, Development 136, no.1919 (Oct 2009): 3247–3256.https://doi.org/10.1242/dev.039859Alan M. Cheshire, Bilal E. Kerman, Warren R. Zipfel, Alexander A. Spector, Deborah J. Andrew Kinetic and mechanical analysis of live tube morphogenesis, Developmental Dynamics 237, no.1010 (Sep 2008): 2874–2888.https://doi.org/10.1002/dvdy.21709Reo Maeda, Shunya Hozumi, Kiichiro Taniguchi, Takeshi Sasamura, Ryutaro Murakami, Kenji Matsuno Roles of single-minded in the left–right asymmetric development of the Drosophila embryonic gut, Mechanisms of Development 124, no.33 (Mar 2007): 204–217.https://doi.org/10.1016/j.mod.2006.12.001L. NUNNEY Pupal period and adult size in Drosophila melanogaster : a cautionary tale of contrasting correlations between two sexually dimorphic traits, Journal of Evolutionary Biology 20, no.11 (Dec 2006): 141–151.https://doi.org/10.1111/j.1420-9101.2006.01214.xHeather L. D. Brown, Lucy Cherbas, Peter Cherbas, James W. Truman Use of time-lapse imaging and dominant negative receptors to dissect the steroid receptor control of neuronal remodeling in Drosophila, Development 133, no.22 (Jan 2006): 275–285.https://doi.org/10.1242/dev.02191Holger Apitz, Martin Strünkelnberg, Heinz Gert de Couet, Karl-Friedrich Fischbach Single-minded, Dmef2, Pointed, and Su(H) act on identified regulatory sequences of the roughest gene in Drosophila melanogaster, Development Genes and Evolution 215, no.99 (Aug 2005): 460–469.https://doi.org/10.1007/s00427-005-0005-zWolf U. Blanckenhorn Different growth responses to temperature and resource limitation in three fly species with similar life histories, Evolutionary Ecology 13, no.44 (May 1999).https://doi.org/10.1023/A:1006741222586Karl Simin, Emily A Bates, Michael A Horner, Anthea Letsou Genetic Analysis of Punt, a Type II Dpp Receptor That Functions Throughout the Drosophila melanogaster Life Cycle, Genetics 148, no.22 (Feb 1998): 801–813.https://doi.org/10.1093/genetics/148.2.801Stephen G. Hall, Allan J. Bieber Mutations in theDrosophila neuroglian cell adhesion molecule affect motor neuron pathfinding and peripheral nervous system patterning, Journal of Neurobiology 32, no.33 (Mar 1997): 325–340.https://doi.org/10.1002/(SICI)1097-4695(199703)32:3 3.0.CO;2-9Z.Y. Al-Saffar, J.N.R. Grainger, J. Aldrich Temperature and humidity affecting development, survival and weight loss of the pupal stage of Drosophila melanogaster, and the influence of alternating temperature on the larvae, Journal of Thermal Biology 21, no.5-65-6 (Oct 1996): 389–396.https://doi.org/10.1016/S0306-4565(96)00025-3Leonard Nunney THE RESPONSE TO SELECTION FOR FAST LARVAL DEVELOPMENT IN DROSOPHILA MELANOGASTER AND ITS EFFECT ON ADULT WEIGHT: AN EXAMPLE OF A FITNESS TRADE-OFF, Evolution 50, no.33 (May 2017): 1193–1204.https://doi.org/10.1111/j.1558-5646.1996.tb02360.xZ.Y. Al-Saffar, J.N.R. Grainger, J. Aldrich Influence of constant and changing temperature and humidity on the development and survival of the eggs and pupae of Drosophila melanogaster (Meigen), Journal of Thermal Biology 20, no.55 (Oct 1995): 389–397.https://doi.org/10.1016/0306-4565(94)00075-TCharles C Hong, Carl Hashimoto An unusual mosaic protein with a protease domain, encoded by the nudeI gene, is involved in defining embryonic dorsoventral polarity in Drosophila, Cell 82, no.55 (Sep 1995): 785–794.https://doi.org/10.1016/0092-8674(95)90475-1Alexander A. Neyfakh, Daniel L. Hartl GENETIC CONTROL OF THE RATE OF EMBRYONIC DEVELOPMENT: SELECTION FOR FASTER DEVELOPMENT AT ELEVATED TEMPERATURES, Evolution 47, no.55 (May 2017): 1625–1631.https://doi.org/10.1111/j.1558-5646.1993.tb02182.xB J Zwaan, R Bijlsma, R F Hoekstra On the developmental theory of ageing. II. The effect of developmental temperature on longevity in relation to adult body size in D. melanogaster, Heredity 68, no.22 (Feb 1992): 123–130.https://doi.org/10.1038/hdy.1992.19Talila Volk, Liselotte I. Fessler, John H. Fessler A role for integrin in the formation of sarcomeric cytoarchitecture, Cell 63, no.33 (Nov 1990): 525–536.https://doi.org/10.1016/0092-8674(90)90449-OLewis I. Held Sensitive periods for abnormal patterning on a leg segment inDrosophila melanogaster, Rouxs Archives of Developmental Biology 199, no.11 (Jul 1990): 31–47.https://doi.org/10.1007/BF01681531G Ribó, J Ocaña, A Prevosti Effect of larval crowding on adult mating behaviour in Drosophila melanogaster, Heredity 63, no.22 (Oct 1989): 195–202.https://doi.org/10.1038/hdy.1989.92Jorge L. Cladera, Fanny C. Manso The Limit of Tolerance to Heat Pulses During Embryogenesis in Ceratitis capitata Wiedemann (Diptera; Tephritidae), International Journal of Tropical Insect Science 9, no.0101 (Sep 2011): 61–67.https://doi.org/10.1017/S1742758400010043S. Paul Bainbridge, Mary Bownes Ecdysteroid titers during Drosophila metamorphosis, Insect Biochemistry 18, no.22 (Jan 1988): 185–197.https://doi.org/10.1016/0020-1790(88)90023-6Sanford D. Porter Impact of temperature on colony growth and developmental rates of the ant, Solenopsis invicta, Journal of Insect Physiology 34, no.1212 (Jan 1988): 1127–1133.https://doi.org/10.1016/0022-1910(88)90215-6C.C. Lindsey 3 Factors Controlling Meristic Variation, (Jan 1988): 197–274.https://doi.org/10.1016/S1546-5098(08)60215-0Peter J. Mayer, George T. Baker Genetic Aspects of Drosophila as a Model System of Eukaryotic Aging, (Jan 1985): 61–102.https://doi.org/10.1016/S0074-7696(08)60579-3Terence L. Wagner, James A. Gagne, Peter J.H. Sharpe, Robert N. Coulson A biophysical model of southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), development, Ecological Modelling 21, no.1-21-2 (Jan 1984): 125–147.https://doi.org/10.1016/0304-3800(84)90028-0 Derek Roff On Being the Right Size, The American Naturalist 118, no.33 (Oct 2015): 405–422.https://doi.org/10.1086/283832Ralph J. Greenspan, James A. Finn, Jeffrey C. Hall Acetylcholinesterase mutants in drosophila and their effects on the structure and function of the cental nervous system, Journal of Comparative Neurology 189, no.44 (Oct 2004): 741–774.https://doi.org/10.1002/cne.901890409David L. Shellenbarger, David P. Cross Genetic dissection of fertility inDrosophila males: Properties of temperature-sensitive lethal-temperature-sensitive male-sterile mutations, Developmental Biology 71, no.22 (Sep 1979): 308–322.https://doi.org/10.1016/0012-1606(79)90172-6Y. Cohet, J. David Control of the adult reproductive potential by preimaginal thermal conditions, Oecologia 36, no.33 (Jan 1978): 295–306.https://doi.org/10.1007/BF00348055Howard H. Bottrell The relationship between temperature and duration of egg development in some epiphytic cladocera and copepoda from the River Thames, reading, with a discussion of temperature functions, Oecologia 18, no.11 (Mar 1975): 63–84.https://doi.org/10.1007/BF00350636Robert L. Seecof, J. James Donady Factors affecting Drosophila neuron and myocyte differentiation in vitro, Mechanisms of Ageing and Development 1 (Jan 1972): 165–174.https://doi.org/10.1016/0047-6374(72)90064-4Martin Blumenfeld THE REPLICATION OF SATELLITE DNA's DURING DROSOPHILA DEVELOPMENT, (Jan 1972): 11–31.https://doi.org/10.1016/B978-0-12-591550-2.50007-3George A. Sacher THE COMPLEMENTARITY OF ENTROPY TERMS FOR THE TEMPERATURE‐DEPENDENCE OF DEVELOPMENT AND AGING*, Annals of the New York Academy of Sciences 138, no.22 (Dec 2006): 680–712.https://doi.org/10.1111/j.1749-6632.1967.tb55016.xLudger Rensing Zur circadianen Rhythmik des Sauerstoffverbrauches von Drosophila, Zeitschrift f�r Vergleichende Physiologie 53, no.11 (Jan 1966): 62–83.https://doi.org/10.1007/BF00343046Jakob Altmann Die Variabilit�t der Kernzahlen in den larvalen Speicheldr�sen von Drosophila melanogaster, Zeitschrift f�r Zellforschung und Mikroskopische Anatomie 70, no.11 (Jan 1966): 36–53.https://doi.org/10.1007/BF00345063Annemarie Schneider-Minder Cytologische Untersuchung der Embryonalentwicklung von Drosophila Melanogaster Nach Röntgenbestrahlung in Frühen Entwicklungsstadien, International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 11, no.11 (Jul 2009): 1–20.https://doi.org/10.1080/09553006614550741 A. Glenn Richards The Generality of Temperature Effects on Developmental Rate and on Oxygen Consumption in Insect Eggs, Physiological Zoology 37, no.22 (Sep 2015): 199–211.https://doi.org/10.1086/physzool.37.2.30152331K. BAKKER, F. X. NELISSEN ON THE RELATIONS BETWEEN THE DURATION OF THE LARVAL AND PUPAL PERIOD, WEIGHT AND DIURNAL RHYTHM IN EMERGENCE IN DROSOPHILA MELANOGASTER, Entomologia Experimentalis et Applicata 6, no.11 (Apr 2011): 37–52.https://doi.org/10.1111/j.1570-7458.1963.tb00601.x James Henderson Sang The Ecological Determinants of Population Growth in a Drosophila Culture. III. Larval and Pupal Survival, Physiological Zoology 22, no.33 (Sep 2015): 183–202.https://doi.org/10.1086/physzool.22.3.30152044 Ivor Cornman The Effects of Ether upon the Development of Drosophila melanogaster, Physiological Zoology 17, no.44 (Sep 2015): 367–377.https://doi.org/10.1086/physzool.17.4.30151736Sung-Y�n Ma Experimentelle Untersuchungen �ber Hitzemodifikationen des Fl�gels von Drosophila melanogaster, Wilhelm Roux' Archiv f�r Entwicklungsmechanik der Organismen 142, no.33 (Jan 1944): 508–618.https://doi.org/10.1007/BF00596682 Donald Greiff The Effect of Zinc Sulfate Upon an Inbred Population of Drosophila melanogaster, The American Naturalist 77, no.772772 (Oct 2015): 426–441.https://doi.org/10.1086/281142Francis Joseph Ryan Temperature change and the subsequent rate of development, Journal of Experimental Zoology 88, no.11 (Jun 2005): 25–54.https://doi.org/10.1002/jez.1400880104Morris Rabinowitz Studies on the cytology and early embryology of the egg of Drosophila melanogaster, Journal of Morphology 69, no.11 (Feb 2005): 1–49.https://doi.org/10.1002/jmor.1050690102 Donald Greiff Longevity in Drosophila melanogaster and its Ebony Mutant in the Absence of Food, The American Naturalist 74, no.753753 (Sep 2015): 363–376.https://doi.org/10.1086/280902 G. P. Child , R. Blanc , and H. H. Plough Somatic Effects of Temperature on Development in Drosophila melanogaster. I. Phenocopies and Reversal of Dominance, Physiological Zoology 13, no.11 (Sep 2015): 56–64.https://doi.org/10.1086/physzool.13.1.30151526 R. Blanc , and G. P. Child Somatic Effects of Temperature on Development in Drosophila melanogaster. II. Temperature-Effective Period of Truncate, Physiological Zoology 13, no.11 (Sep 2015): 65–72.https://doi.org/10.1086/physzool.13.1.30151527W. Buchmann Über die Wirkung der Temperatur auf den Mutationsprozeß beiDrosophila melanogaster, Zeitschrift für Induktive Abstammungs- und Vererbungslehre 74, no.11 (Dec 1938): 465–471.https://doi.org/10.1007/BF01908018Charles William Robertson The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes, Journal of Morphology 59, no.22 (Feb 2005): 351–399.https://doi.org/10.1002/jmor.1050590207

Referência(s)
Altmetric
PlumX