The Anaerobic Metabolism of Fish

1958; University of Chicago Press; Volume: 31; Issue: 2 Linguagem: Inglês

10.1086/physzool.31.2.30155385

ISSN

1937-4267

Autores

Pavel Blažka,

Tópico(s)

Water Quality Monitoring Technologies

Resumo

Previous articleNext article No AccessThe Anaerobic Metabolism of FishP. BlažkaP. BlažkaPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 31, Number 2Apr., 1958 Article DOIhttps://doi.org/10.1086/physzool.31.2.30155385 Views: 251Total views on this site Citations: 176Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). PDF download Crossref reports the following articles citing this article:Ilaria de Meo, Kjartan Østbye, Kimmo K. Kahilainen, Brian Hayden, Marius Magnus, Antonio B. S. Poléo Resource use of crucian carp along a lake productivity gradient is related to body size, predation risk, and resource competition, Ecology of Freshwater Fish 32, no.11 (Jun 2022): 10–22.https://doi.org/10.1111/eff.12668Maria Carmela Cerra, Mariacristina Filice, Alessia Caferro, Rosa Mazza, Alfonsina Gattuso, Sandra Imbrogno Cardiac Hypoxia Tolerance in Fish: From Functional Responses to Cell Signals, International Journal of Molecular Sciences 24, no.22 (Jan 2023): 1460.https://doi.org/10.3390/ijms24021460K. Håkan Olsén, Madeleine Bonow Crucian carp (Carassius carassius (L.)), an anonymous fish with great skills, Ichthyological Research 290 (Sep 2022).https://doi.org/10.1007/s10228-022-00892-zJacob W. Brownscombe, Michael J. Lawrence, David Deslauriers, Ramon Filgueira, Robin J. Boyd, Steven J. Cooke Applied fish bioenergetics, (Jan 2022): 141–188.https://doi.org/10.1016/bs.fp.2022.04.004Md Jakiul Islam, Andreas Kunzmann, Matthew James Slater Extreme winter cold-induced osmoregulatory, metabolic, and physiological responses in European seabass (Dicentrarchus labrax) acclimatized at different salinities, Science of The Total Environment 771 (Jun 2021): 145202.https://doi.org/10.1016/j.scitotenv.2021.145202Ilaria de Meo, Kjartan Østbye, Kimmo K. Kahilainen, Brian Hayden, Christian H. H. Fagertun, Antonio B. S. Poléo Predator community and resource use jointly modulate the inducible defense response in body height of crucian carp, Ecology and Evolution 11, no.55 (Feb 2021): 2072–2085.https://doi.org/10.1002/ece3.7176Dmitry L. Lajus, Victor R. Alekseev Fish: Diapause, Dormancy, Aestivation, and Delay in Gonad Development, (Sep 2019): 53–69.https://doi.org/10.1007/978-3-030-21213-1_4Lubomír Hanel Náměty na pokusy a pozorování vodních živočichů ve školním akváriu II (dýchání vodních živočichů), Biologie. Chemie. Zeměpis 27, no.22 (Jun 2018): 11–21.https://doi.org/10.14712/25337556.2018.2.2Cathrine E. Fagernes, Kåre-Olav Stensløkken, Åsmund K. Røhr, Michael Berenbrink, Stian Ellefsen, Göran E. Nilsson Extreme anoxia tolerance in crucian carp and goldfish through neofunctionalization of duplicated genes creating a new ethanol-producing pyruvate decarboxylase pathway, Scientific Reports 7, no.11 (Aug 2017).https://doi.org/10.1038/s41598-017-07385-4Jonathan A.W. Stecyk Cardiovascular Responses to Limiting Oxygen Levels, (Jan 2017): 299–371.https://doi.org/10.1016/bs.fp.2017.09.005Matti Vornanen, Jaakko Haverinen Glycogen dynamics of crucian carp (Carassius carassius) in prolonged anoxia, Journal of Comparative Physiology B 186, no.88 (Jun 2016): 999–1007.https://doi.org/10.1007/s00360-016-1007-zJoonas Varis, Jaakko Haverinen, Matti Vornanen Lowering Temperature is the Trigger for Glycogen Build-Up and Winter Fasting in Crucian Carp ( Carassius carassius ), Zoological Science 33, no.11 (Feb 2016): 83–91.https://doi.org/10.2108/zs150072Laura H. McDonnell, Lauren J. Chapman At the edge of the thermal window: effects of elevated temperature on the resting metabolism, hypoxia tolerance and upper critical thermal limit of a widespread African cichlid, Conservation Physiology 3, no.11 (Dec 2015): cov050.https://doi.org/10.1093/conphys/cov050G. Guénard, D. Boisclair, P. Legendre , Ecosphere 6, no.44 ( 2015): 1.https://doi.org/10.1890/ES14-00479.1 Rashpal S. Dhillon , Lili Yao , Victoria Matey , Bo-Jian Chen , An-Jie Zhang , Zhen-Dong Cao , Shi-Jian Fu , Colin J. Brauner , Yuxiang S. Wang , and Jeffrey G. Richards Interspecific Differences in Hypoxia-Induced Gill Remodeling in Carp, Physiological and Biochemical Zoology 86, no.66 (Jul 2015): 727–739.https://doi.org/10.1086/673180J. J. Torres, M. D. Grigsby, M. E. Clarke Aerobic and anaerobic metabolism in oxygen minimum layer fishes: the role of alcohol dehydrogenase, Journal of Experimental Biology 215, no.1111 (May 2012): 1905–1914.https://doi.org/10.1242/jeb.060236Guro K. Sandvik, Göran E. Nilsson, Frank B. Jensen Dramatic increase of nitrite levels in hearts of anoxia-exposed crucian carp supporting a role in cardioprotection, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 302, no.44 (Feb 2012): R468–R477.https://doi.org/10.1152/ajpregu.00538.2011Matti Vornanen, Jaakko Haverinen Seasonality of glycogen phosphorylase activity in crucian carp (Carassius carassius L.), Journal of Comparative Physiology B 181, no.77 (Apr 2011): 917–926.https://doi.org/10.1007/s00360-011-0580-4Jamin M. Mulvey, Gillian M.C. Renshaw GABA is not elevated during neuroprotective neuronal depression in the hypoxic epaulette shark (Hemiscyllium ocellatum), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 152, no.22 (Feb 2009): 273–277.https://doi.org/10.1016/j.cbpa.2008.10.017Matti Vornanen, Jonathan A.W. Stecyk, Göran E. Nilsson Chapter 9 The Anoxia-Tolerant Crucian Carp (Carassius Carassius L.), (Jan 2009): 397–441.https://doi.org/10.1016/S1546-5098(08)00009-5Milica Mandic, Gigi Y. Lau, Manu M.S. Nijjar, Jeffrey G. Richards Metabolic recovery in goldfish: A comparison of recovery from severe hypoxia exposure and exhaustive exercise, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 148, no.44 (Nov 2008): 332–338.https://doi.org/10.1016/j.cbpc.2008.04.012Jonathan A.W. Stecyk, Gina L. Galli, Holly A. Shiels, Anthony P. Farrell Cardiac survival in anoxia-tolerant vertebrates: An electrophysiological perspective, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 148, no.44 (Nov 2008): 339–354.https://doi.org/10.1016/j.cbpc.2008.05.016R. J. H. Beverton, S. J. Holt A Review of the Lifespans and Mortality Rates of Fish in Nature, and Their Relation to Growth and Other Physiological Characteristics, (May 2008): 142–180.https://doi.org/10.1002/9780470715253.ch10Göran E. Nilsson, Sara Östlund-Nilsson Does size matter for hypoxia tolerance in fish?, Biological Reviews 83, no.22 (May 2008): 173–189.https://doi.org/10.1111/j.1469-185X.2008.00038.xJonathan A.W. Stecyk, Kåre-Olav Stensløkken, Göran E. Nilsson, Anthony P. Farrell Adenosine does not save the heart of anoxia-tolerant vertebrates during prolonged oxygen deprivation, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 147, no.44 (Aug 2007): 961–973.https://doi.org/10.1016/j.cbpa.2007.03.002DALE G. MCNEIL, GERARD P. CLOSS Behavioural responses of a south-east Australian floodplain fish community to gradual hypoxia, Freshwater Biology 52, no.33 (Mar 2007): 412–420.https://doi.org/10.1111/j.1365-2427.2006.01705.xMatti Vornanen, Vesa Paajanen Seasonal changes in glycogen content and Na + -K + -ATPase activity in the brain of crucian carp, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 291, no.55 (Nov 2006): R1482–R1489.https://doi.org/10.1152/ajpregu.00172.2006F. William H. Beamish, Phannee Sa-ardrit, Sumpun Tongnunui Habitat Characteristics of the Cyprinidae in Small Rivers in Central Thailand, Environmental Biology of Fishes 76, no.2-42-4 (May 2006): 237–253.https://doi.org/10.1007/s10641-006-9029-0Mark Abrahams The Physiology of Antipredator Behaviour: What You Do With What You've Got, (Jan 2005): 79–108.https://doi.org/10.1016/S1546-5098(05)24003-7James S. Ballantyne Mitochondria: aerobic and anaerobic design—lessons from molluscs and fishes, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 139, no.33 (Nov 2004): 461–467.https://doi.org/10.1016/j.cbpc.2004.09.015Matti Vornanen, Vesa Paajanen Seasonality of dihydropyridine receptor binding in the heart of an anoxia-tolerant vertebrate, the crucian carp ( Carassius carassius L.), American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 287, no.55 (Nov 2004): R1263–R1269.https://doi.org/10.1152/ajpregu.00317.2004Jaakko Haverinen, Matti Vornanen Temperature acclimation modifies Na+ current in fish cardiac myocytes, Journal of Experimental Biology 207, no.1616 (Jul 2004): 2823–2833.https://doi.org/10.1242/jeb.01103T. Robb, M. V. Abrahams Variation in tolerance to hypoxia in a predator and prey species: an ecological advantage of being small?, Journal of Fish Biology 62, no.55 (Jun 2003): 1067–1081.https://doi.org/10.1046/j.1095-8649.2003.00097.xGillian M. C. Renshaw, Susan E. Dyson Increased nitric oxide synthase in the vasculature of the epaulette shark brain following hypoxia, NeuroReport 10, no.88 (Jun 1999): 1707–1712.https://doi.org/10.1097/00001756-199906030-00015Milan Straškraba, Sven E. Jørgensen, Bernard C. Patten Ecosystems emerging: 2. Dissipation, Ecological Modelling 117, no.11 (Apr 1999): 3–39.https://doi.org/10.1016/S0304-3800(98)00194-XG.E. Shulman, R. Malcolm Love Adaptations of Fish, (Jan 1999): 7–58.https://doi.org/10.1016/S0065-2881(08)60151-0 References, (Jan 1999): 255–325.https://doi.org/10.1016/S0065-2881(08)60159-5Graham Wise, Jamin M. Mulvey, Gillian M. C. Renshaw Hypoxia tolerance in the epaulette shark (Hemiscyllium ocellatum), The Journal of Experimental Zoology 281, no.11 (May 1998): 1–5.https://doi.org/10.1002/(SICI)1097-010X(19980501)281:1 3.0.CO;2-SDan Johansson, Göran E Nilsson, Kjell B Døving Anoxic depression of light-evoked potentials in retina and optic tectum of crucian carp, Neuroscience Letters 237, no.2-32-3 (Nov 1997): 73–76.https://doi.org/10.1016/S0304-3940(97)00814-8Peter L. Lutz, Göran E. Nilsson, Miguel A. Peréz-Pinzón Anoxia tolerant animals from a neurobiological perspective, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 113, no.11 (Jan 1996): 3–13.https://doi.org/10.1016/0305-0491(95)02046-2Antonio B. S. Poleo, Sigurd A. Osxnevad, Kjartan Osstbye, Erik Heibo, Ronny A. Andersen, L. Asbjom Vollestad Body morphology of crucian carp Carassius carassius in lakes with or without piscivorous fish, Ecography 18, no.33 (Sep 1995): 225–229.https://doi.org/10.1111/j.1600-0587.1995.tb00125.xR. N. Finn, J. Widdows, H. J. Fyhn Calorespirometry of developing embryos and yolk-sac larvae of turbot (Scophthalmus maximus), Marine Biology 122, no.11 (Mar 1995): 157–163.https://doi.org/10.1007/BF00349289Antonio B. S. Pol�o, Sigurd A. �xnevad, Kjartan �stbye, Ronny A. Andersen, Deborah H. Oughton, Leif A. V�llestad Survival of crucian carp,Carassius carassius, exposed to a high low-molecular weight inorganic aluminium challenge, Aquatic Sciences 57, no.44 (Jan 1995): 350–359.https://doi.org/10.1007/BF00878398Göran E. Nilsson Chapter 2 Oxygen availability: Brain defence mechanisms, (Jan 1995): 19–44.https://doi.org/10.1016/S1873-0140(06)80028-7Kaworu Nakamura Physiological Characteristics of Goldfish Endurability in Air, Fisheries science 61, no.33 (Jan 1995): 455–457.https://doi.org/10.2331/fishsci.61.455Marcel T.M van Raaij, Bert-Jan Breukel, Guido E.E.J.M van den Thillart, Albert D.F Addink Lipid metabolism of goldfish, Carassius auratus (L.) during normoxia and anoxia. Indications for fatty acid chain elongation, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 107, no.11 (Jan 1994): 75–84.https://doi.org/10.1016/0305-0491(94)90227-5Chiba Atsushi, Chichibu Shiko High-energy phosphate metabolites in loach (Cobitis biwae) during urethane anesthesia, Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 106, no.11 (Sep 1993): 87–91.https://doi.org/10.1016/0742-8413(93)90258-MGöran E. Nilsson, Peter Rosén, Dan Johansson Anoxic Depression of Spontaneous Locomotor Activity in Crucian Carp Quantified by A Computerized Imaging Technique, Journal of Experimental Biology 180, no.11 (Jul 1993): 153–162.https://doi.org/10.1242/jeb.180.1.153Nina Matikainen, Matti Vornanen Effect of Season and Temperature Acclimation on the Function of Crucian Carp (Carassius Carassius) Heart, Journal of Experimental Biology 167, no.11 (Jun 1992): 203–220.https://doi.org/10.1242/jeb.167.1.203V. Kalarani, P. Murali Mohan, Ronald W. Davies Thermal acclimation and metabolism of the hepatopancreas in the tropical scorpion, Heterometrus fulvipes, Journal of Thermal Biology 17, no.33 (May 1992): 141–146.https://doi.org/10.1016/0306-4565(92)90024-ARoger Lennard, Henry Huddart Hypoxia-induced changes in electrophysiological responses and associated calcium movements of flounder (Platichthys flesus) heart and gut, Comparative Biochemistry and Physiology Part A: Physiology 101, no.44 (Apr 1992): 717–721.https://doi.org/10.1016/0300-9629(92)90349-UYlva Lind Summertime and early autumn activity of some enzymes in the carbohydrate and fatty acid metabolism of the crucian carp, Fish Physiology and Biochemistry 9, no.5-65-6 (Feb 1992): 409–415.https://doi.org/10.1007/BF02274222Jeroen Van der Boon, Francis A. Eelkema, Guido E.E.J.M. Van den Thillart, Albert D.F. Addink Influence of anoxia on free amino acid levels in blood, liver and skeletal muscles of the goldfish, Carassius aurantus L., Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 101, no.1-21-2 (Jan 1992): 193–198.https://doi.org/10.1016/0305-0491(92)90178-TATSUSHI CHIBA, MASAMITSU HAMAGUCHI, MASAAKI KOSAKA, TATSUYA TOKUNO, TOSHIHARU ASAI, SHIKO CHICHIBU Quality Evaluation of Fish Meat by 31 Phosphorus-Nuclear Magnetic Resonance, Journal of Food Science 56, no.33 (May 1991): 660–664.https://doi.org/10.1111/j.1365-2621.1991.tb05351.xW. Wieser Physiological energetics and ecophysiology, (Jan 1991): 426–455.https://doi.org/10.1007/978-94-011-3092-9_15Timothy Quinn, David E Schneider Respiration of the teleost fish Ammodytes hexapterus in relation to its burrowing behavior, Comparative Biochemistry and Physiology Part A: Physiology 98, no.11 (Jan 1991): 71–75.https://doi.org/10.1016/0300-9629(91)90580-6Atsushi Chiba, Masamitsu Hamaguchi, Masaaki Kosaka, Tatsuya Tokuno, Toshiharu Asai, Shiko Chichibu Energy metabolism in unrestrained fish with in vivo 31P-NMR, Comparative Biochemistry and Physiology Part A: Physiology 96, no.22 (Jan 1990): 253–255.https://doi.org/10.1016/0300-9629(90)90688-OAtsushi Chiba, Masamitsu Hamaguchi, Tatsuya Tokuno, Toshiharu Asai, Shiko Chichibu Changes in high-energy phosphate metabolites in loaches (cobitis biwae) during 2-phenoxyethanol anesthesia, Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 97, no.11 (Jan 1990): 183–186.https://doi.org/10.1016/0742-8413(90)90190-KA Van Waarde, G Van den Thillart, C Erkelens, A Addink, J Lugtenburg Functional coupling of glycolysis and phosphocreatine utilization in anoxic fish muscle. An in vivo 31P NMR study., Journal of Biological Chemistry 265, no.22 (Jan 1990): 914–923.https://doi.org/10.1016/S0021-9258(19)40137-3M. L. Glass, N. A. Andersen, M. Kruhøffer, E. M. Williams, N. Heisler Combined Effects of Environmental PO2 and Temperature on Ventilation and Blood Gases in the Carp Cyprinus Carpio L., Journal of Experimental Biology 148, no.11 (Jan 1990): 1–17.https://doi.org/10.1242/jeb.148.1.1GORDON R. ULTSCH ECOLOGY AND PHYSIOLOGY OF HIBERNATION AND OVERWINTERING AMONG FRESHWATER FISHES, TURTLES, AND SNAKES, Biological Reviews 64, no.44 (Nov 1989): 435–515.https://doi.org/10.1111/j.1469-185X.1989.tb00683.xM. N. Fernandes, F. T. Rantin Respiratory responses of Oreochromis niloticus (Pisces, Cichlidae) to environmental hypoxia under different thermal conditions, Journal of Fish Biology 35, no.44 (Oct 1989): 509–519.https://doi.org/10.1111/j.1095-8649.1989.tb03002.xJ. Van Waversveld, A. D. F. Addink, G. Van Den Thillart Simultaneous Direct and Indirect Calorimetry on Normoxic and Anoxic Goldfish, Journal of Experimental Biology 142, no.11 (Mar 1989): 325–335.https://doi.org/10.1242/jeb.142.1.325C. Jerry Rutledge, Thomas L. Beitinger The effects of dissolved oxygen and aquatic surface respiration on the critical thermal maxima of three intermittent-stream fishes, Environmental Biology of Fishes 24, no.22 (Feb 1989): 137–143.https://doi.org/10.1007/BF00001283Göran E. Nilsson Regional distribution of monoamines and monoamine metabolites in the brain of the crucian carp (Carassius carassius L.), Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 94, no.11 (Jan 1989): 223–228.https://doi.org/10.1016/0742-8413(89)90170-9Jon From, Gorm Rasmussen Fish Growth, (Jan 1989): 331–369.https://doi.org/10.1016/B978-0-444-88030-7.50015-9E. Nilsson Göran Effects of Anoxia on Serotonin Metabolism in Crucian Carp Brain, Journal of Experimental Biology 141, no.11 (Jan 1989): 419–428.https://doi.org/10.1242/jeb.141.1.419Aren Van Waarde Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 91, no.22 (Jan 1988): 207–228.https://doi.org/10.1016/0305-0491(88)90136-8Josef Wissing, Ernst Zebe The anaerobic metabolism of the bitterling Rhodeus amarus (cyprinidaf, teleostei), Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 89, no.22 (Jan 1988): 299–303.https://doi.org/10.1016/0305-0491(88)90226-XN Sukumaran, M N Kutty Energy utilization in freshwater mullet,Rhinomugil corsula (Hamilton) under exercise, Proceedings: Animal Sciences 96, no.66 (Nov 1987): 705–714.https://doi.org/10.1007/BF03179502Ulrich Saint-Paul, Gercilia M. Soares Diurnal distribution and behavioral responses of fishes to extreme hypoxia in an Amazon floodplain lake, Environmental Biology of Fishes 20, no.22 (Oct 1987): 91–104.https://doi.org/10.1007/BF00005289J. From, G. Rasmussen A Model of Fish Growth in Aquaculture, IFAC Proceedings Volumes 20, no.77 (Aug 1987): 87–96.https://doi.org/10.1016/S1474-6670(17)59161-2K. L. Yu, N. Y. S. Woo Metabolic adjustments of an air-breathing teleost, Channa maculata, to acute and prolonged exposure to hypoxic water, Journal of Fish Biology 31, no.22 (Aug 1987): 165–175.https://doi.org/10.1111/j.1095-8649.1987.tb05223.xGraham Shelton, David R. Jones, William K. Milsom Control of Breathing in Ectothermic Vertebrates, (Jan 2011): 857–909.https://doi.org/10.1002/cphy.cp030228Kathryn A. Dickson, Jeffrey B. Graham Adaptations to hypoxic environments in the erythrinid fish Hoplias microlepis, Environmental Biology of Fishes 15, no.44 (Apr 1996): 301–308.https://doi.org/10.1007/BF03549800Kathleen M. Sullivan Physiology of feeding and starvation tolerance in overwintering freshwater fishes, (Jan 1986): 259–268.https://doi.org/10.1007/978-94-017-1158-6_22I.J. Holopainen, H. Hyvärinen, J. Piironen Anaerobic wintering of crucian carp (Carassius carassius L.)—II. Metabolic products, Comparative Biochemistry and Physiology Part A: Physiology 83, no.22 (Jan 1986): 239–242.https://doi.org/10.1016/0300-9629(86)90568-2I. J. Holopainen, H. Hyvärinen Ecology and physiology of crucian carp [ Carassius carassius (L.)] in small Finnish ponds with anoxic conditions in winter, SIL Proceedings, 1922-2010 22, no.44 (Dec 2017): 2566–2570.https://doi.org/10.1080/03680770.1983.11897726H Hyvärinen, I.J Holopainen, J Piironen Anaerobic wintering of crucian carp (Carassius carassius L.)-I. Annual dynamics of glycogen reserves in nature, Comparative Biochemistry and Physiology Part A: Physiology 82, no.44 (Jan 1985): 797–803.https://doi.org/10.1016/0300-9629(85)90485-2Francisco Tadeu Rantin, Kjell Johansen Responses of the teleost Hoplias malabaricus to hypoxia, Environmental Biology of Fishes 11, no.33 (Oct 1984): 221–228.https://doi.org/10.1007/BF00000466Ulrich Saint-Paul Physiological adaptation to hypoxia of a neotropical characoid fish Colossoma macropomum, Serrasalmidae, Environmental Biology of Fishes 11, no.11 (Jun 1984): 53–62.https://doi.org/10.1007/BF00001845Donald L. Kramer The evolutionary ecology of respiratory mode in fishes: an analysis based on the costs of breathing, (Jan 1984): 67–80.https://doi.org/10.1007/978-94-015-7682-6_5Joop Mourik Carbon dioxide production by red skeletal muscle of goldfish (Carassius auratus L.) aerobic and anaerobic metabolism of glucose and glutamate, Comparative Biochemistry and Physiology Part A: Physiology 77, no.11 (Jan 1984): 151–156.https://doi.org/10.1016/0300-9629(84)90027-6Norman Y.S Woo, Rudolf S.S Wu Changes in biochemical composition in the red grouper, Epinephelus akaara (Temminck and Schlegel), and the black sea bream, Mylio macrocephalus (Basilewsky), during hypoxic exposure, Comparative Biochemistry and Physiology Part A: Physiology 77, no.33 (Jan 1984): 475–482.https://doi.org/10.1016/0300-9629(84)90214-7Aren van Waarde, Guido van den Thillart, Fanja Kesbeke Anaerobic energy metabolism of the European eel,Anguilla anguilla L., Journal of comparative physiology 149, no.44 (Dec 1983): 469–475.https://doi.org/10.1007/BF00690005Donald L. Kramer The evolutionary ecology of respiratory mode in fishes: an analysis based on the costs of breathing, Environmental Biology of Fishes 9, no.22 (Sep 1983): 145–158.https://doi.org/10.1007/BF00690859G. M. Hughes, C. Albers, D. Muster, K. H. Gotz Respiration of the carp, Cyprinus carpio L., at 10 and 20o C and the effects of hypoxia, Journal of Fish Biology 22, no.55 (May 1983): 613–628.https://doi.org/10.1111/j.1095-8649.1983.tb04221.xRobert H. Gray, Thomas L. Page, Marco G. Saroglia, Vincenzo Festa Tolerance of carp Cyprinus carpio and black bullhead Ictalurus melas to Gas-supersaturated water under lotic and lentic conditions, Environmental Pollution Series A, Ecological and Biological 30, no.22 (Feb 1983): 125–133.https://doi.org/10.1016/0143-1471(83)90009-0Guido Van den Thillart, Marianne Van Berge-Henegouwen, Fanja Kesbeke Anaerobic metabolism of goldfish, Carassius auratus (L.): Ethanol and CO2 excretion rates and anoxia tolerance at 20, 10 and 5°C, Comparative Biochemistry and Physiology Part A: Physiology 76, no.22 (Jan 1983): 295–300.https://doi.org/10.1016/0300-9629(83)90330-4R.M.M. Crawford The anaerobic retreat as a survival strategy for aerobic plants and animals, Transactions of the Botanical Society of Edinburgh 44, no.11 (Oct 2010): 57–63.https://doi.org/10.1080/03746608208685414 Warren W. Burggren "Air Gulping" Improves Blood Oxygen Transport during Aquatic Hypoxia in the Goldfish Carassius auratus, Physiological Zoology 55, no.44 (Sep 2015): 327–334.https://doi.org/10.1086/physzool.55.4.30155860Ajit D. Dange, Vasant B. Masurekar Naphthalene-induced changes in carbohydrate metabolism in Sarotherodon mossambicus Peters (Pisces: Cichlidae), Hydrobiologia 94, no.22 (Sep 1982): 163–172.https://doi.org/10.1007/BF00010896M. Peer Mohamed, M. N. Kutty Low ambient oxygen tolerance in some freshwater teleosts, Experientia 38, no.55 (May 1982): 587–588.https://doi.org/10.1007/BF02327063Sharon A. Klinger, John J. Magnuson, George W. Gallepp Survival mechanisms of the central mudminnow (Umbra limi), fathead minnow (Pimephales promelas) and brook stickleback (Culaea inconstans) for low oxygen in winter, Environmental Biology of Fishes 7, no.22 (Mar 1982): 113–120.https://doi.org/10.1007/BF00001781Guido van den Thillart, Rien Verbeek Substrates for anaerobic CO2-production by the goldfish,Carassius auratus (L.): Decarboxylation of14C-labeled metabolites, Journal of comparative physiology 149, no.11 (Mar 1982): 75–81.https://doi.org/10.1007/BF00735717J. Mourik, P. Raeven, K. Steur, A.D.F. Addink Anaerobic metabolism of red skeletal muscle of goldfish, Carassius auratus (L.), FEBS Letters 137, no.11 (Nov 2001): 111–114.https://doi.org/10.1016/0014-5793(82)80326-8Ian A. Johnston Physiology of muscle in hatchery raised fish, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 73, no.11 (Jan 1982): 105–124.https://doi.org/10.1016/0305-0491(82)90204-8Pilar Morata, Maria José Faus, Mercedes Perez-Palomo, F. Sánchez-Medina Effect of stress on liver and muscle glycogen phosphorylase in rainbow trout (salmo gairdneri), Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 72, no.33 (Jan 1982): 421–425.https://doi.org/10.1016/0305-0491(82)90221-8Donald L. Kramer, John P. Mehegan Aquatic surface respiration, an adaptive response to hypoxia in the guppy, Poecilia reticulata (Pisces, Poeciliidae), Environmental Biology of Fishes 6, no.3-43-4 (Nov 1981): 299–313.https://doi.org/10.1007/BF00005759Dietrich Uhlmann The limnological background of sewage control for relieving water pollution, SIL Proceedings, 1922-2010 21, no.11 (Dec 2017): 71–87.https://doi.org/10.1080/03680770.1980.11896961Mohamed M. Peer, M. N. Kutty Respiratory quotient and ammonia quotient in Tilapia mossambica (Peters) with special reference to hypoxia and recovery, Hydrobiologia 76, no.1-21-2 (Jan 1981): 3–9.https://doi.org/10.1007/BF00014025G. Wegener Comparative Aspects of Energy Metabolism in Nonmammalian Brains Under Normoxic and Hypoxic Conditions, (Jan 1981): 87–109.https://doi.org/10.1016/B978-0-08-025911-6.50013-2P. Milton, R. N. Dixon Further studies of the effects of the anaesthetic quinaldine on the physiology of the intertidal teleost Blennius pholis, Journal of the Marine Biological Association of the United Kingdom 60, no.44 (May 2009): 1043–1051.https://doi.org/10.1017/S0025315400042089Warren W. Burggren, James N. Cameron Anaerobic metabolism, gas exchange, and acid-base balance during hypoxic exposure in the channel catfish,Ictalurus punctatus, Journal of Experimental Zoology 213, no.33 (Sep 1980): 405–416.https://doi.org/10.1002/jez.1402130312Guido van den Thillart, Fanja Kesbeke, Aren van Waarde Anaerobic energy-metabolism of goldfish,Carassius auratus (L.), Journal of comparative physiology 136, no.11 (Mar 1980): 45–52.https://doi.org/10.1007/BF00688621C.R Bridges, A.R Brand The effect of hypoxia on oxygen consumption and blood lactate levels of some marine crustacea, Comparative Biochemistry and Physiology Part A: Physiology 65, no.44 (Jan 1980): 399–409.https://doi.org/10.1016/0300-9629(80)90051-1L. Gemelli, G. Martino, B. Tota Oxidation of lactate in the compact and spongy myocardium of tuna fish (Thunnus thynnus thynnus L.), Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 65, no.22 (Jan 1980): 321–326.https://doi.org/10.1016/0305-0491(80)90020-6Micke J. Smith, Alan G. Heath Responses to acute anoxia and prolonged hypoxia by rainbow trout (Salmo gairdneri) and mirror carp (Cyprinus carpio) red and white muscle: Use of conventional and modified metabolic pathways, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 66, no.22 (Jan 1980): 267–272.https://doi.org/10.1016/0305-0491(80)90062-0Jørgen B. Jørgensen, Tariq Mustafa The effect of hypoxia on carbohydrate metabolism in flounder (Platichthys flesus L.)—I. Utilization of glycogen and accumulation of glycolytic end products in various tissues, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 67, no.22 (Jan 1980): 243–248.https://doi.org/10.1016/0305-0491(80)90139-XMargaret E. Ott, Norbert Heisler, Gordon R. Ultsch A re-evaluation of the relationship between temperature and the critical oxygen tension in freshwater fishes, Comparative Biochemistry and Physiology Part A: Physiology 67, no.33 (Jan 1980): 337–340.https://doi.org/10.1016/S0300-9629(80)80005-3Micke J. Smith, Alan G. Heath Acute toxicity of copper, chromate, zinc, and cyanide to freshwater fish: Effect of different temperatures, Bulletin of Environmental Contamination and Toxicology 22, no.11 (Dec 1979): 113–119.https://doi.org/10.1007/BF02026917M. Groenendaal On sulphide and the distribution of Arenicola marina in a tidal mud flat in the Dutch Wadden Sea, Netherlands Journal of Sea Research 13, no.3-43-4 (Dec 1979): 562–570.https://doi.org/10.1016/0077-7579(79)90026-7Joseph J Cech, Stephen J Mitchell, Michael J Massingill Respiratory adaptations of sacramento blackfish, Orthodon microlepidotus (ayres), for hypoxia, Comparative Biochemistry and Physiology Part A: Physiology 63, no.33 (Jan 1979): 411–415.https://doi.org/10.1016/0300-9629(79)90612-1Daniel K.O. Chan, Norman Y.S. Woo The respiratory metabolism of the Japanese eel, Anguilla japonica: Effects of ambient oxygen, temperature, season, body weight, and hypophysectomy, General and Comparative Endocrinology 35, no.22 (Jun 1978): 160–168.https://doi.org/10.1016/0016-6480(78)90158-2William Davison, Geoffrey Goldspink The Effect of Training on the Swimming Muscles of the Goldfish ( Carassius Auratus ), Journal of Experimental Biology 74, no.11 (Jun 1978): 115–122.https://doi.org/10.1242/jeb.74.1.115Gunnar Lykkeboe, Roy E. Weber Changes in the respiratory properties of the blood in the carp,Cyprinus carpio, induced by diurnal variation in ambient oxygen tension, Journal of Comparative Physiology ? B 128, no.22 (Jan 1978): 117–125.https://doi.org/10.1007/BF00689475Guido van den Thillart, Fanja Kesbeke Anaerobic production of carbon dioxide and ammonia by goldfish Carassius auratus (L.), Comparative Biochemistry and Physiology Part A: Physiology 59, no.44 (Jan 1978): 393–400.https://doi.org/10.1016/0300-9629(78)9018

Referência(s)
Altmetric
PlumX