The Vascularity and Possible Thermoregulatory Function of the Horns in Goats
1966; University of Chicago Press; Volume: 39; Issue: 2 Linguagem: Inglês
10.1086/physzool.39.2.30152426
ISSN1937-4267
Autores Tópico(s)Meat and Animal Product Quality
ResumoPrevious articleNext article No AccessThe Vascularity and Possible Thermoregulatory Function of the Horns in GoatsCharles R. TaylorCharles R. TaylorPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by Volume 39, Number 2Apr., 1966 Article DOIhttps://doi.org/10.1086/physzool.39.2.30152426 Views: 49Total views on this site Citations: 69Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1966 University of ChicagoPDF download Crossref reports the following articles citing this article:Sean R. Notley, Duncan Mitchell, Nigel A. S. Taylor A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 1: Foundational principles and theories of regulation, European Journal of Applied Physiology 123, no.1111 (Sep 2023): 2379–2459.https://doi.org/10.1007/s00421-023-05272-7Fabio Napolitano, Giuseppe De Rosa, Alfonso Chay-Canul, Adolfo Álvarez-Macías, Alfredo M. F. Pereira, Andrea Bragaglio, Patricia Mora-Medina, Daniela Rodríguez-González, Ricardo García-Herrera, Ismael Hernández-Ávalos, Adriana Domínguez-Oliva, Corrado Pacelli, Emilio Sabia, Alejandro Casas-Alvarado, Brenda Reyes-Sotelo, Ada Braghieri The Challenge of Global Warming in Water Buffalo Farming: Physiological and Behavioral Aspects and Strategies to Face Heat Stress, Animals 13, no.1919 (Oct 2023): 3103.https://doi.org/10.3390/ani13193103Daniela Rodríguez-González, Isabel Guerrero Legarreta, Rosy G. Cruz-Monterrosa, Fabio Napolitano, Cristiane Gonçalves Titto, Ayman H. Abd El-Aziz, Ismael Hernández-Avalos, Alejandro Casas-Alvarado, Adriana Domínguez-Oliva, Daniel Mota-Rojas Assessment of thermal changes in water buffalo mobilized from the paddock and transported by short journeys, Frontiers in Veterinary Science 10 (May 2023).https://doi.org/10.3389/fvets.2023.1184577Marijke Algra, Lara de Keijzer, Saskia S. Arndt, Frank J. C. M. van Eerdenburg, Vivian C. Goerlich Evaluation of the Thermal Response of the Horns in Dairy Cattle, Animals 13, no.33 (Jan 2023): 500.https://doi.org/10.3390/ani13030500Joost F. de Jong, Herbert H. T. Prins Why There Are No Modern Equids Living in Tropical Lowland Rainforests, (Aug 2023): 73–112.https://doi.org/10.1007/978-3-031-27144-1_4Jenifer Wohlers, Peter Stolz The Importance of Cow-Individual Effects and Diet, Ambient Temperature, and Horn Status on Delayed Luminescence of Milk from Brown Swiss Dairy Cows, Dairy 3, no.33 (Jul 2022): 513–527.https://doi.org/10.3390/dairy3030037Noah T. Leith, Kasey D. Fowler‐Finn, Michael P. Moore Evolutionary interactions between thermal ecology and sexual selection, Ecology Letters 220 (Jul 2022).https://doi.org/10.1111/ele.14072Duncan Mitchell, Helen P. Laburn South African Thermal Physiology: Highlights from the Twentieth Century, (Sep 2022): 435–491.https://doi.org/10.1007/978-1-0716-2362-6_8Case Vincent Miller, Michael Pittman The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction, Biological Reviews 96, no.55 (Jul 2021): 2058–2112.https://doi.org/10.1111/brv.12743Alireza Nasoori Formation, structure, and function of extra‐skeletal bones in mammals, Biological Reviews 95, no.44 (Apr 2020): 986–1019.https://doi.org/10.1111/brv.12597T. Baars, G. Jahreis, S. Lorkowski, C. Rohrer, J. Vervoort, K. Hettinga Short communication: Changes under low ambient temperatures in the milk lipodome and metabolome of mid-lactation cows after dehorning as a calf, Journal of Dairy Science 102, no.33 (Mar 2019): 2698–2702.https://doi.org/10.3168/jds.2018-15425Gosia Zobel, Heather W Neave, Jim Webster Understanding natural behavior to improve dairy goat (Capra hircus) management systems, Translational Animal Science 3, no.11 (Dec 2018): 212–224.https://doi.org/10.1093/tas/txy145Michael J. McKinley, Davide Martelli, Glenn L. Pennington, David Trevaks, Robin M. McAllen Integrating Competing Demands of Osmoregulatory and Thermoregulatory Homeostasis, Physiology 33, no.33 (May 2018): 170–181.https://doi.org/10.1152/physiol.00037.2017Zachary T. Calamari, Ryanna Fossum Shape disparity of bovid (Mammalia, Artiodactyla) horn sheaths and horn cores allows discrimination by species in 3D geometric morphometric analyses, Journal of Morphology 279, no.33 (Nov 2017): 361–374.https://doi.org/10.1002/jmor.20778Saradee Sengupta, Martín D. Ezcurra, Saswati Bandyopadhyay A new horned and long-necked herbivorous stem-archosaur from the Middle Triassic of India, Scientific Reports 7, no.11 (Aug 2017).https://doi.org/10.1038/s41598-017-08658-8Glenn J. Tattersall, Bassel Arnaout, Matthew R. E. Symonds The evolution of the avian bill as a thermoregulatory organ, Biological Reviews 92, no.33 (Oct 2016): 1630–1656.https://doi.org/10.1111/brv.12299Glenn J. Tattersall Infrared thermography: A non-invasive window into thermal physiology, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 202 (Dec 2016): 78–98.https://doi.org/10.1016/j.cbpa.2016.02.022Ute Knierim, Nora Irrgang, Beatrice A. Roth To be or not to be horned—Consequences in cattle, Livestock Science 179 (Sep 2015): 29–37.https://doi.org/10.1016/j.livsci.2015.05.014Mayumi Matsuda-Nakamura, Kei Nagashima Protection of the brain against heat damage, The Journal of Physical Fitness and Sports Medicine 3, no.22 (Jan 2014): 217–221.https://doi.org/10.7600/jpfsm.3.217David W.E. Hone, Darren Naish, Innes C. Cuthill Does mutual sexual selection explain the evolution of head crests in pterosaurs and dinosaurs?, Lethaia 45, no.22 (Apr 2012): 139–156.https://doi.org/10.1111/j.1502-3931.2011.00300.xM. Zachary Darnell and Pablo Munguia Thermoregulation as an Alternate Function of the Sexually Dimorphic Fiddler Crab Claw., The American Naturalist 178, no.33 (Jul 2015): 419–428.https://doi.org/10.1086/661239Frank E. Marino The critical limiting temperature and selective brain cooling: neuroprotection during exercise?, International Journal of Hyperthermia 27, no.66 (Aug 2011): 582–590.https://doi.org/10.3109/02656736.2011.589096Matthew D. White, Jesse G. Greiner, Patrick L. L. McDonald Point: Humans do demonstrate selective brain cooling during hyperthermia, Journal of Applied Physiology 110, no.22 (Feb 2011): 569–571.https://doi.org/10.1152/japplphysiol.00992.2010James O. Farlow, Shoji Hayashi, Glenn J. Tattersall Internal vascularity of the dermal plates of Stegosaurus (Ornithischia, Thyreophora), Swiss Journal of Geosciences 103, no.22 (Aug 2010): 173–185.https://doi.org/10.1007/s00015-010-0021-5ANDREW A. FARKE Evolution, homology, and function of the supracranial sinuses in ceratopsian dinosaurs, Journal of Vertebrate Paleontology 30, no.55 (Sep 2010): 1486–1500.https://doi.org/10.1080/02724634.2010.501436Jakob Bro-Jørgensen THE INTENSITY OF SEXUAL SELECTION PREDICTS WEAPON SIZE IN MALE BOVIDS, Evolution 61, no.66 (Jun 2007): 1316–1326.https://doi.org/10.1111/j.1558-5646.2007.00111.xJAMES W. CAIN, PAUL R. KRAUSMAN, STEVEN S. ROSENSTOCK, JACK C. TURNER Mechanisms of Thermoregulation and Water Balance in Desert Ungulates, Wildlife Society Bulletin 34, no.33 (Oct 2006): 570–581.https://doi.org/10.2193/0091-7648(2006)34[570:MOTAWB]2.0.CO;2ANDREW A. FARKE MORPHOLOGY AND ONTOGENY OF THE CORNUAL SINUSES IN CHASMOSAURINE DINOSAURS (ORNITHISCHIA: CERATOPSIDAE), Journal of Paleontology 80, no.44 (Jul 2006): 780–785.https://doi.org/10.1666/0022-3360(2006)80[780:MAOOTC]2.0.CO;2Russell P. Main, Armand de Ricqlès, John R. Horner, Kevin Padian The evolution and function of thyreophoran dinosaur scutes: implications for plate function in stegosaurs, Paleobiology 31, no.22 (Jun 2005): 291–314.https://doi.org/10.1666/0094-8373(2005)031[0291:TEAFOT]2.0.CO;2J.M. Kamau, S.J. Nsoso In-vitro heat exchange at the rete of the Boer goat under specified laboratory conditions, Journal of Thermal Biology 29, no.7-87-8 (Oct 2004): 687–690.https://doi.org/10.1016/j.jtherbio.2004.08.041Michał Caputa Selective brain cooling: a multiple regulatory mechanism, Journal of Thermal Biology 29, no.7-87-8 (Oct 2004): 691–702.https://doi.org/10.1016/j.jtherbio.2004.08.079M.K. Irmak, A. Korkmaz, O. Erogul Selective brain cooling seems to be a mechanism leading to human craniofacial diversity observed in different geographical regions, Medical Hypotheses 63, no.66 (Jan 2004): 974–979.https://doi.org/10.1016/j.mehy.2004.05.003Duncan Mitchell, Shane K. Maloney, Claus Jessen, Helen P. Laburn, Peter R. Kamerman, Graham Mitchell, Andrea Fuller Adaptive heterothermy and selective brain cooling in arid-zone mammals, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 131, no.44 (Apr 2002): 571–585.https://doi.org/10.1016/S1096-4959(02)00012-XClaus Jessen, Gernot Kuhnen Selective Brain Cooling in Mammals: General and Regional Modes of Operation, (Jan 2001): 207–214.https://doi.org/10.1007/978-4-431-67035-3_24Claus Jessen Selective Brain Cooling in Mammals and Birds., The Japanese Journal of Physiology 51, no.33 (Jan 2001): 291–301.https://doi.org/10.2170/jjphysiol.51.291Manfred Hoefs The thermoregulatory potential of Ovis horn cores, Canadian Journal of Zoology 78, no.88 (Aug 2000): 1419–1426.https://doi.org/10.1139/z00-075Karine Picard, Donald W. Thomas, Marco Festa-Bianchet, François Belleville, André Laneville Differences in the thermal conductance of tropical and temperate bovid horns, Écoscience 6, no.22 (Mar 2016): 148–158.https://doi.org/10.1080/11956860.1999.11682515Reese E. Barrick, Michael K. Stoskopf, Jonathan D. Marcot, Dale A. Russell, William J. Showers The thermoregulatory functions of the Triceratops frill and horns: heat flow measured with oxygen isotopes, Journal of Vertebrate Paleontology 18, no.44 (Dec 1998): 746–750.https://doi.org/10.1080/02724634.1998.10011103Claus Jessen Brain Cooling: An Economy Mode of Temperature Regulation in Artiodactyls, Physiology 13, no.66 (Dec 1998): 281–286.https://doi.org/10.1152/physiologyonline.1998.13.6.281Gernot Kuhnen Selective brain cooling reduces respiratory water loss during heat stress, Comparative Biochemistry and Physiology Part A: Physiology 118, no.33 (Nov 1997): 891–895.https://doi.org/10.1016/S0300-9629(97)00235-1Karine Picard, Marco Festa-Bianchet, Donald Thomas The cost of horniness: Heat loss may counter sexual selection for large horns in temperate bovids, Écoscience 3, no.33 (Mar 2016): 280–284.https://doi.org/10.1080/11956860.1996.11682343Sentiel A. Rommel, Greg A. Early, Keith A. Matassa, D. Ann Pabst, William A. McLellan Venous structures associated with thermoregulation of phocid seal reproductive organs, The Anatomical Record 243, no.33 (Nov 1995): 390–402.https://doi.org/10.1002/ar.1092430314W. Rerkamnuaychoke, K. Ohsawa, M. Kurohmaru, Y. Hayashi, T. Nishida The Evidence of Carotid Body in the Carotid Rete of the Shiba Goat, Anatomia, Histologia, Embryologia 23, no.22 (Jun 2007): 137–147.https://doi.org/10.1111/j.1439-0264.1994.tb00246.xR.C. Schroter, D. Robertshaw, R. Zine Filali Brain cooling and respiratory heat exchange in camels during rest and exercise, Respiration Physiology 78, no.11 (Oct 1989): 95–105.https://doi.org/10.1016/0034-5687(89)90145-XM.D. Hofmeyr, G.N. Louw Thermoregulation, pelage conductance and renal function in the desert-adapted springbok, Antidorcas marsupialis, Journal of Arid Environments 13, no.22 (Sep 1987): 137–151.https://doi.org/10.1016/S0140-1963(18)31133-9G. Diéguez, A.L. García, M.V. Conde, B. Gómez, L. Santamaría, S. Lluch In vitro studies of the carotid rete mirabile of artiodactyla, Microvascular Research 33, no.22 (Mar 1987): 143–154.https://doi.org/10.1016/0026-2862(87)90013-6V. A. Krabill, N. G. Ghoshal Effect of tracheal by‐pass on brain temperature and cerebrospinal fluid pressure in sheep*, Zentralblatt für Veterinärmedizin Reihe A 30, no.77 (May 2010): 542–551.https://doi.org/10.1111/j.1439-0442.1983.tb01016.x J. Scott Turner , and C. Richard Tracy Blood Flow to Appendages and the Control of Heat Exchange in American Alligators, Physiological Zoology 56, no.22 (Sep 2015): 195–200.https://doi.org/10.1086/physzool.56.2.30156051L. O. C. Ohale, N. G. Ghoshal Histological Evidence for Pathological Changes in the Optic Disc and Retina Associated with Tracheal By-pass Breathing in Sheep1, Zentralblatt für Veterinärmedizin Reihe A 29, no.99 (May 2010): 679–687.https://doi.org/10.1111/j.1439-0442.1982.tb01827.xA. W. Vogl, Mary E. Todd, H. D. Fisher An ultrastructural and fluorescence histochemical investigation of the innervation of retial arteries inMonodon monoceros, Journal of Morphology 168, no.11 (Apr 1981): 109–119.https://doi.org/10.1002/jmor.1051680111C. Gall Relationship Between Body Conformation and Production in Dairy Goats, Journal of Dairy Science 63, no.1010 (Oct 1980): 1768–1781.https://doi.org/10.3168/jds.S0022-0302(80)83136-5P.L. Parmeggiani Temperature Regulation during Sleep: A Study in Homeostasis, (Jan 1980): 97–143.https://doi.org/10.1016/B978-0-12-527650-4.50009-8M. Caputa, W. Kądziela, J. Narąbski Heat balance and thermoregulatory responses in pinnaless rabbits, Journal of Thermal Biology 5, no.11 (Jan 1980): 37–39.https://doi.org/10.1016/0306-4565(80)90038-8 R. Dmi'el , D. Robertshaw , and I. Choshniak Sweat Gland Secretion in the Black Bedouin Goat, Physiological Zoology 52, no.44 (Sep 2015): 558–564.https://doi.org/10.1086/physzool.52.4.30155946P. E. WHEELER Elaborate CNS cooling structures in large dinosaurs, Nature 275, no.56795679 (Oct 1978): 441–443.https://doi.org/10.1038/275441a0J. A. Horne Factors relating to energy conservation during sleep in mammals, Physiological Psychology 5, no.44 (Nov 2013): 403–408.https://doi.org/10.3758/BF03337844A. A. Degen Fat-tailed Awassi and German Mutton Merino sheep under semi-arid conditions: 3. Body temperatures and panting rate, The Journal of Agricultural Science 89, no.22 (Mar 2009): 399–405.https://doi.org/10.1017/S002185960002832XM. A. Baker, L. W. Chapman Rapid Brain Cooling in Exercising Dogs, Science 195, no.42804280 (Feb 1977): 781–783.https://doi.org/10.1126/science.836587James O. Farlow, Carl V. Thompson, Daniel E. Rosner Plates of the Dinosaur Stegosaurus : Forced Convection Heat Loss Fins?, Science 192, no.42444244 (Jun 1976): 1123–1125.https://doi.org/10.1126/science.192.4244.1123William J. Gonyea Behavioral implications of saber-toothed felid morphology, Paleobiology 2, no.44 (Apr 2016): 332–342.https://doi.org/10.1017/S0094837300004966M.A. Baker, L.W. Chapman, M. Nathanson Control of brain temperature in dogs: effects of tracheostomy, Respiration Physiology 22, no.33 (Dec 1974): 325–333.https://doi.org/10.1016/0034-5687(74)90081-4U. von Saint Paul, J. Aschoff Gehirntemperatur als Maß der Erregung bei Hühnern, Zeitschrift für Tierpsychologie 35, no.22 (Apr 2010): 132–146.https://doi.org/10.1111/j.1439-0310.1974.tb00439.xG. Causey Whittow UNGULATES, (Jan 1971): 191–281.https://doi.org/10.1016/B978-0-12-747602-5.50009-5S. A. RICHARDS THE BIOLOGY AND COMPARATIVE PHYSIOLOGY OF THERMAL PANTING, Biological Reviews 45, no.22 (Jun 2008): 223–261.https://doi.org/10.1111/j.1469-185X.1970.tb01631.xPeter Lomax Drugs and Body Temperature, (Jan 1970): 1–43.https://doi.org/10.1016/S0074-7742(08)60057-4James N. Hayward, Mary Ann Baker A comparative study of the role of the cerebral arterial blood in the regulation of brain temperature in five mammals, Brain Research 16, no.22 (Dec 1969): 417–440.https://doi.org/10.1016/0006-8993(69)90236-4VALERIUS GEIST Horn-like Structures as Rank Symbols, Guards and Weapons, Nature 220, no.51695169 (Nov 1968): 813–814.https://doi.org/10.1038/220813b0BERNARD STONEHOUSE Thermoregulatory Function of Growing Antlers, Nature 218, no.51445144 (Jun 1968): 870–872.https://doi.org/10.1038/218870a0Mary Ann Baker, James N. Hayward Intracranial heat exchange and regulation of brain temperature in sheep, Life Sciences 7, no.77 (Apr 1968): 349–357.https://doi.org/10.1016/0024-3205(68)90003-9
Referência(s)