Studies on the Physiology of the Masked Shrew Sorex Cinereus
1959; University of Chicago Press; Volume: 32; Issue: 4 Linguagem: Inglês
10.1086/physzool.32.4.30155403
ISSN1937-4267
AutoresPeter Morrison, Fred A. Ryser, Albert R. Dawe,
Tópico(s)Animal Ecology and Behavior Studies
ResumoPrevious articleNext article No AccessStudies on the Physiology of the Masked Shrew Sorex CinereusPeter Morrison, Fred A. Ryser, and Albert R. DawePeter Morrison, Fred A. Ryser, and Albert R. DawePDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 32, Number 4Oct., 1959 Article DOIhttps://doi.org/10.1086/physzool.32.4.30155403 Views: 191Total views on this site Citations: 117Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). PDF download Crossref reports the following articles citing this article:Yun Hee Chang, Boris I. Sheftel, Bjarke Jensen Anatomy of the heart with the highest heart rate, Journal of Anatomy 241, no.11 (Feb 2022): 173–190.https://doi.org/10.1111/joa.13640Michel Genoud, Karin Isler, Robert D. Martin Comparative analyses of basal rate of metabolism in mammals: data selection does matter, Biological Reviews 93, no.11 (Jul 2017): 404–438.https://doi.org/10.1111/brv.12350Imran Khaliq, Katrin Böhning-Gaese, Roland Prinzinger, Markus Pfenninger, Christian Hof The influence of thermal tolerances on geographical ranges of endotherms, Global Ecology and Biogeography 26, no.66 (Mar 2017): 650–668.https://doi.org/10.1111/geb.12575Enrico L. Rezende, Leonardo D. Bacigalupe Thermoregulation in endotherms: physiological principles and ecological consequences, Journal of Comparative Physiology B 185, no.77 (May 2015): 709–727.https://doi.org/10.1007/s00360-015-0909-5Kevin L. Campbell, Anthony V. Signore, Masashi Harada, Roy E. Weber Molecular and physicochemical characterization of hemoglobin from the high-altitude Taiwanese brown-toothed shrew (Episoriculus fumidus), Journal of Comparative Physiology B 182, no.66 (Apr 2012): 821–829.https://doi.org/10.1007/s00360-012-0659-6Michael Brecht, Robert Naumann, Farzana Anjum, Jason Wolfe, Martin Munz, Carolin Mende, Claudia Roth-Alpermann The neurobiology of Etruscan shrew active touch, Philosophical Transactions of the Royal Society B: Biological Sciences 366, no.15811581 (Nov 2011): 3026–3036.https://doi.org/10.1098/rstb.2011.0160David C. Poole, Howard H. Erickson Highly Athletic Terrestrial Mammals: Horses and Dogs, (Jan 2011): 1–37.https://doi.org/10.1002/cphy.c091001Stephen M. Reilly, Thomas D. White Breathing with your belly: Abdominal exhalation, loco-ventilatory integration and size constraints on locomotion in small mammals, Zoology 112, no.33 (May 2009): 161–168.https://doi.org/10.1016/j.zool.2008.08.002A. J. Munn, T. J. Dawson, S. K. Maloney Ventilation patterns in red kangaroos (Macropus rufus Desmarest): juveniles work harder than adults at thermal extremes, but extract more oxygen per breath at thermoneutrality, Journal of Experimental Biology 210, no.1515 (Aug 2007): 2723–2729.https://doi.org/10.1242/jeb.005009Brian K. Mcnab The evolution of energetics in eutherian "insectivorans": an alternate approach, Acta Theriologica 51, no.22 (Jun 2006): 113–128.https://doi.org/10.1007/BF03192663R. W. Gusztak, R. A. MacArthur, K. L. Campbell Bioenergetics and thermal physiology of American water shrews (Sorex palustris), Journal of Comparative Physiology B 175, no.22 (Dec 2004): 87–95.https://doi.org/10.1007/s00360-004-0465-xDavid L. Goldstein, Stacy Newland Water balance and kidney function in the least shrew (Cryptotis parva), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 139, no.11 (Sep 2004): 71–76.https://doi.org/10.1016/j.cbpb.2004.07.003John O. Whitaker Sorex cinereus, Mammalian Species 743, no.11 (Jan 2004): 1.https://doi.org/10.1644/1545-1410(2004)743 2.0.CO;2O. Mathieu-Costello, S. Morales, J. Savolainen, M. Vornanen Fiber capillarization relative to mitochondrial volume in diaphragm of shrew, Journal of Applied Physiology 93, no.11 (Jul 2002): 346–353.https://doi.org/10.1152/japplphysiol.00940.2001F. Fournier, D. W. Thomas, T. Garland A test of two hypotheses explaining the seasonality of reproduction in temperate mammals, Functional Ecology 13, no.44 (Mar 2002): 523–529.https://doi.org/10.1046/j.1365-2435.1999.00342.xHaya Mover, Amos Ar Heart and lung adaptations to pregnancy and lactation in a crocidurine shrew, Respiration Physiology 102, no.2-32-3 (Dec 1995): 269–278.https://doi.org/10.1016/0034-5687(95)00066-6P.J. Stephenson, P.A. Racey Resting metabolic rate and reproduction in the Insectivora, Comparative Biochemistry and Physiology Part A: Physiology 112, no.11 (Sep 1995): 215–223.https://doi.org/10.1016/0300-9629(95)00066-GDaniel Banin, Abraham Haim, Zeev Arad Metabolism and thermoregulation in the Levant vole Microtus guentheri: The role of photoperiodicity, Journal of Thermal Biology 19, no.11 (Feb 1994): 55–62.https://doi.org/10.1016/0306-4565(94)90009-4 Sally D. Poppitt , John R. Speakman , and Paul A. Racey The Energetics of Reproduction in the Common Shrew (Sorex araneus): A Comparison of Indirect Calorimetry and the Doubly Labeled Water Method, Physiological Zoology 66, no.66 (Sep 2015): 964–982.https://doi.org/10.1086/physzool.66.6.30163749Brian K. McNab The comparative energetics of rigid endothermy: the Arvicolidae, Journal of Zoology 227, no.44 (Mar 2009): 585–606.https://doi.org/10.1111/j.1469-7998.1992.tb04417.xAndrea Sparti Comparative temperature regulation of African and European shrew, Comparative Biochemistry and Physiology Part A: Physiology 97, no.33 (Jan 1990): 391–397.https://doi.org/10.1016/0300-9629(90)90629-7M. Vornanen Basic functional properties of the cardiac muscle of the common shrew ( Sorex araneus ) and some other small mammals, Journal of Experimental Biology 145, no.11 (Sep 1989): 339–351.https://doi.org/10.1242/jeb.145.1.339Andrea Sparti, Michel Genoud Basal rate of metabolism and temperature regulation in Sorex coronatus and S. minutus (Soricidae: Mammalia), Comparative Biochemistry and Physiology Part A: Physiology 92, no.33 (Jan 1989): 359–363.https://doi.org/10.1016/0300-9629(89)90576-8M. GENOUD Energetic strategies of shrews: ecological constraints and evolutionary implications, Mammal Review 18, no.44 (Dec 1988): 173–193.https://doi.org/10.1111/j.1365-2907.1988.tb00083.x Brian K. McNab Complications Inherent in Scaling the Basal Rate of Metabolism in Mammals, The Quarterly Review of Biology 63, no.11 (Oct 2015): 25–54.https://doi.org/10.1086/415715Paolo Cerretelli, Pietro E. Prampero Gas Exchange in Exercise, (Jan 2011): 297–339.https://doi.org/10.1002/cphy.cp030416C. W. AITCHISON Review of winter trophic relations of soricine shrews, Mammal Review 17, no.11 (Mar 1987): 1–24.https://doi.org/10.1111/j.1365-2907.1987.tb00045.xC. W. AITCHISON Winter energy requirements of soricine shrews, Mammal Review 17, no.11 (Mar 1987): 25–38.https://doi.org/10.1111/j.1365-2907.1987.tb00046.xG Pérez-Suárez, F Arévalo, P López-Luna Hemoglobin and oxygen: Different affinities in two species of rodents (Mus musculus and Pitymys duodecimcostatus), Comparative Biochemistry and Physiology Part A: Physiology 84, no.33 (Jan 1986): 409–411.https://doi.org/10.1016/0300-9629(86)90338-5A Nagel The electrocardiogram of European shrews, Comparative Biochemistry and Physiology Part A: Physiology 83, no.44 (Jan 1986): 791–794.https://doi.org/10.1016/0300-9629(86)90729-2Virginia Hayssen, Robert C Lacy Basal metabolic rates in mammals: Taxonomic differences in the allometry of BMR and body mass, Comparative Biochemistry and Physiology Part A: Physiology 81, no.44 (Jan 1985): 741–754.https://doi.org/10.1016/0300-9629(85)90904-1Sun Ru-yung, Jing Shao-liang Relation between average daily metabolic rate and resting metabolic rate of the mongolian gerbil (Meriones unguiculatus), Oecologia 65, no.11 (Dec 1984): 122–124.https://doi.org/10.1007/BF00384474R. Fons, H. Stephan, G. Baron Brains of Soricidae, Journal of Zoological Systematics and Evolutionary Research 22, no.22 (Apr 2009): 145–158.https://doi.org/10.1111/j.1439-0469.1984.tb00653.xThomas Tomasi Shrew metabolic rates and thyroxine utilization, Comparative Biochemistry and Physiology Part A: Physiology 78, no.33 (Jan 1984): 431–435.https://doi.org/10.1016/0300-9629(84)90572-3S.P. Goyal, P.K. Ghosh Body weight exponents of metabolic rate and minimal thermal conductance in burrowing desert rodents, Journal of Arid Environments 6, no.11 (Mar 1983): 43–52.https://doi.org/10.1016/S0140-1963(18)31431-9Belle Leon, Amiram Shkolnik, Tamar Shkolnik Temperature regulation and water metabolism in the elephant shrew Elephantulus edwardi, Comparative Biochemistry and Physiology Part A: Physiology 74, no.22 (Jan 1983): 399–407.https://doi.org/10.1016/0300-9629(83)90623-0BRIAN K. MCNAB Energetics, body size, and the limits to endothermy, Journal of Zoology 199, no.11 (Aug 2009): 1–29.https://doi.org/10.1111/j.1469-7998.1983.tb06114.xBrian K. McNab Evolutionary Alternatives in the Physiological Ecology of Bats, (Jan 1982): 151–200.https://doi.org/10.1007/978-1-4613-3421-7_4Fredi Kronenberg, H. Craig Heller Colonial thermoregulation in honey bees (Apis mellifera), Journal of Comparative Physiology ? B 148, no.11 (Jan 1982): 65–76.https://doi.org/10.1007/BF00688889Klaus Dieter Jürgens, Heinz Bartels, Rut Bartels Blood oxygen transport and organ weights of small bats and small non-flying mammals, Respiration Physiology 45, no.33 (Sep 1981): 243–260.https://doi.org/10.1016/0034-5687(81)90009-8Howard J. Seeherman, C. Richard Taylor, Geoffrey M.O. Maloiy, Robert B. Armstrong Design of the mammalian respiratory system. II. Measuring maximum aerobic capacity, Respiration Physiology 44, no.11 (Apr 1981): 11–23.https://doi.org/10.1016/0034-5687(81)90074-8C. Richard Taylor, Geoffrey M.O. Maloiy, Ewald R. Weibel, Vaughan A. Langman, John M.Z. Kamau, Howard J. Seeherman, Norman C. Heglund Design of the mammalian respiratory system. III. Scaling maximum aerobic capacity to body mass: Wild and domestic mammals, Respiration Physiology 44, no.11 (Apr 1981): 25–37.https://doi.org/10.1016/0034-5687(81)90075-X Daniel R. Deavers , and Jack W. Hudson Temperature Regulation in Two Rodents (Clethrionomys gapperi and Peromyscus leucopus) and a Shrew (Blarina brevicauda) Inhabiting the Same Environment, Physiological Zoology 54, no.11 (Sep 2015): 94–108.https://doi.org/10.1086/physzool.54.1.30155808Graeme S. Maclean Factors influencing the composition of respiratory gases in mammal burrows, Comparative Biochemistry and Physiology Part A: Physiology 69, no.33 (Jan 1981): 373–380.https://doi.org/10.1016/0300-9629(81)92992-3Peter Gehr, Senada Sehovic, Peter H. Burri, Helgard Claassen, Ewald R. Weibel The lung of shrews: Morphometric estimation of diffusion capacity, Respiration Physiology 40, no.11 (Apr 1980): 33–47.https://doi.org/10.1016/0034-5687(80)90003-1 Stan L. Lindstedt Energetics and Water Economy of the Smallest Desert Mammal, Physiological Zoology 53, no.11 (Sep 2015): 82–97.https://doi.org/10.1086/physzool.53.1.30155777S.Robert Bradley, Daniel R Deavers A re-examination of the relationship between thermal conductance and body weight in mammals, Comparative Biochemistry and Physiology Part A: Physiology 65, no.44 (Jan 1980): 465–476.https://doi.org/10.1016/0300-9629(80)90060-2P.C Withers, J.U.M Jarvis The effect of huddling on thermoregulation and oxygen consumption for the naked mole-rat, Comparative Biochemistry and Physiology Part A: Physiology 66, no.22 (Jan 1980): 215–219.https://doi.org/10.1016/0300-9629(80)90154-1M Balakrishnan, K M Alexander Effect of fasting on aspects of feeding of the Indian musk shrew,Suncus murinus viridescens (Blyth), Proceedings: Animal Sciences 88, no.33 (Jun 1979): 179–185.https://doi.org/10.1007/BF03179092 Jack W. Hudson , and Irena M. Scott Daily Torpor in the Laboratory Mouse, Mus musculus Var. Albino, Physiological Zoology 52, no.22 (Sep 2015): 205–218.https://doi.org/10.1086/physzool.52.2.30152564P.K. Ghosh, S.P. Goyal, Ishwar Prakash Metabolism and ecophysiology of Rajasthan desert rodents. Thermoregulation at a moderately low temperature (21 °C) during winter, Journal of Arid Environments 2, no.11 (Mar 1979): 77–83.https://doi.org/10.1016/S0140-1963(18)31706-3G. F. Hayward, J. Phillipson Community structure and functional role of small mammals in ecosystems, (Jan 1979): 135–211.https://doi.org/10.1007/978-94-009-5772-5_4Philip C Withers, Timothy M Casey, Kathleen K Casey Allometry of respiratory and haematological parameters of arctic mammal, Comparative Biochemistry and Physiology Part A: Physiology 64, no.33 (Jan 1979): 343–350.https://doi.org/10.1016/0300-9629(79)90453-5Eugene H. Studier Bioenergetics of growth, pregnancy and lactation in the laboratory mouse, Mus musculus, Comparative Biochemistry and Physiology Part A: Physiology 64, no.44 (Jan 1979): 473–481.https://doi.org/10.1016/0300-9629(79)90574-7Ulrich G. Noll Body temperature, oxygen consumption, noradrenaline response and cardiovascular adaptations in the flying fox, Rousettus aegyptiacus, Comparative Biochemistry and Physiology Part A: Physiology 63, no.11 (Jan 1979): 79–88.https://doi.org/10.1016/0300-9629(79)90631-5Andrew J. Lechner The scaling of maximal oxygen consumption and pulmonary dimensions in small mammals, Respiration Physiology 34, no.11 (Jul 1978): 29–44.https://doi.org/10.1016/0034-5687(78)90047-6S.R. Morton, A.K. Lee Thermoregulation and metabolism in Planigale maculata (Marsupialia: Dasyuridae), Journal of Thermal Biology 3, no.33 (Jul 1978): 117–120.https://doi.org/10.1016/0306-4565(78)90003-7Terence J Dawson, Jane M Wolfers Metabolism, thermoregulation and torpor in shrew sized marsupials of the genus planigale, Comparative Biochemistry and Physiology Part A: Physiology 59, no.33 (Jan 1978): 305–309.https://doi.org/10.1016/0300-9629(78)90167-6Rene Sicart, Renee Sable-Amplis, Roger Fons Comparative aspects of lipid metabolism in two shrews (Suncus etruscus and Crocidura russula), Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 61, no.11 (Jan 1978): 77–80.https://doi.org/10.1016/0305-0491(78)90218-3M. Trojan Water balance and renal adaptations in four palaearctic hamsters, Naturwissenschaften 64, no.1111 (Nov 1977): 591–592.https://doi.org/10.1007/BF00450652G. Causey Whittow, Lim Boo Liat Body temperature and oxygen consumption of two malaysian prosimians, Primates 18, no.22 (Apr 1977): 471–474.https://doi.org/10.1007/BF02383124George A. Bartholomew, Timothy M. Casey Endothermy During Terrestrial Activity in Large Beetles, Science 195, no.42814281 (Mar 1977): 882–883.https://doi.org/10.1126/science.841312Bruce A. Wunder, David S. Dobkin, Ronald D. Gettinger Shifts of thermogenesis in the prairie vole (Microtus ochrogaster), Oecologia 29, no.11 (Jan 1977): 11–26.https://doi.org/10.1007/BF00345359Larry N Rfinking, Delbert L Kilgore, Eleanor S Fairbanks, James D Hamilton Temperature regulation in normothermic black-tailed prairie dogs, Cynomys ludovicianus, Comparative Biochemistry and Physiology Part A: Physiology 57, no.11 (Jan 1977): 161–165.https://doi.org/10.1016/0300-9629(77)90368-1 Jack W. Hudson , and Daniel R. Deavers Thyroid Function and Basal Metabolism in the Ground Squirrels Ammospermophilus leucurus and Spermophilus spp., Physiological Zoology 49, no.44 (Sep 2015): 425–444.https://doi.org/10.1086/physzool.49.4.30155705Peter L. Dalby, Alan G. Heath Oxygen consumption and body temperature of the Argentine field mouse, Akodon azarae, in relation to ambient temperature, Journal of Thermal Biology 1, no.33 (Apr 1976): 177–179.https://doi.org/10.1016/0306-4565(76)90010-3D. L. Jones, L. C. -H. Wang Metabolic and cardiovascular adaptations in the western chipmunks, genusEutamias, Journal of Comparative Physiology ? B 105, no.22 (Jan 1976): 219–231.https://doi.org/10.1007/BF00691124 Ronald D. Gettinger Metabolism and Thermoregulation of a Fossorial Rodent, the Northern Pocket Gopher (Thomomys Talpoides), Physiological Zoology 48, no.44 (Sep 2015): 311–322.https://doi.org/10.1086/physzool.48.4.30155656Norman J. Willems, Kenneth B. Armitage Thermoregulation and water requirements in semiarid and montane populations of the least chipmunk,Eutamias minimus—I. Metabolic rate and body temperature, Comparative Biochemistry and Physiology Part A: Physiology 51, no.44 (Aug 1975): 717–722.https://doi.org/10.1016/0300-9629(75)90044-4Bruce A. Wunder A model for estimating metabolic rate of active or resting mammals, Journal of Theoretical Biology 49, no.22 (Feb 1975): 345–354.https://doi.org/10.1016/0022-5193(75)90177-0Bruce A. Wunder A model for estimating metabolic rate of active or resting mammals, Journal of Theoretical Biology 49, no.11 (Jan 1975): 345–354.https://doi.org/10.1016/S0022-5193(75)80039-7S.Robert Bradley, Jack W. Hudson Temperature regulation in the tree shrew Tupaia glis, Comparative Biochemistry and Physiology Part A: Physiology 48, no.11 (May 1974): 55–60.https://doi.org/10.1016/0300-9629(74)90852-4Bruce A. Wunder, Peter R. Morrison Red squirrel metabolism during incline running, Comparative Biochemistry and Physiology Part A: Physiology 48, no.11 (May 1974): 153–161.https://doi.org/10.1016/0300-9629(74)90863-9Jack W. Hudson, Daniel R. Deavers Metabolism, pulmocutaneous water loss and respiration of eight species of ground squirrels from different environments, Comparative Biochemistry and Physiology Part A: Physiology 45, no.11 (May 1973): 69–100.https://doi.org/10.1016/0300-9629(73)90009-1B.G Collins The ecological significance of thermoregulatory responses to heat stress shown by two populations of an Australian murid, Rattus fuscipes, Comparative Biochemistry and Physiology Part A: Physiology 44, no.44 (Apr 1973): 1129–1140.https://doi.org/10.1016/0300-9629(73)90251-X B. G. Collins , and S. D. Bradshaw Studies on the Metabolism, Thermoregulation, and Evaporative Water Losses of Two Species of Australian Rats, Rattus villosissimus and Rattus rattus, Physiological Zoology 46, no.11 (Sep 2015): 1–21.https://doi.org/10.1086/physzool.46.1.30152512Terence J. Dawson "PRIMITIVE" MAMMALS, (Jan 1973): 1–46.https://doi.org/10.1016/B978-0-12-747603-2.50007-2Ewald R. Weibel Morphometric estimation of pulmonary diffusion capacity, Respiration Physiology 14, no.1-21-2 (Mar 1972): 26–43.https://doi.org/10.1016/0034-5687(72)90015-1 Nathan J. Bolls , and John R. Perfect Summer Resting Metabolic Rate of the Gray Squirrel, Physiological Zoology 45, no.11 (Sep 2015): 54–59.https://doi.org/10.1086/physzool.45.1.30155926Laurence Irving Size and Seasonal Change in Dimensions, (Jan 1972): 163–177.https://doi.org/10.1007/978-3-642-85655-6_11Russell V. Baudinette Energy metabolism and evaporative water loss in the California ground squirrel, Journal of Comparative Physiology 81, no.11 (Jan 1972): 57–72.https://doi.org/10.1007/BF00693550J. A. Iversen Basal energy metabolism of mustelids, Journal of Comparative Physiology 81, no.44 (Jan 1972): 341–344.https://doi.org/10.1007/BF00697754Russell V Baudinette The impact of social aggregation on the respiratory physiology of australian hopping mice, Comparative Biochemistry and Physiology Part A: Physiology 41, no.11 (Jan 1972): 35–38.https://doi.org/10.1016/0300-9629(72)90030-8Walter G. Whitford, Mark I. Conley Oxygen consumption and water metabolism in a carnivorous mouse, Comparative Biochemistry and Physiology Part A: Physiology 40, no.33 (Nov 1971): 797–803.https://doi.org/10.1016/0300-9629(71)90265-9Garth W. Holyoak, Robert C. Stones Temperature regulation of the little brown bat, Myotis lucifugus after acclimation at various ambient temperatures, Comparative Biochemistry and Physiology Part A: Physiology 39, no.33 (Jul 1971): 413–420.https://doi.org/10.1016/0300-9629(71)90305-7M.K. Yousef, R.R.J. Chaffee, H.D. Johnson Oxygen consumption of tree shrews: Effects of ambient temperatures, Comparative Biochemistry and Physiology Part A: Physiology 38, no.33 (Mar 1971): 709–712.https://doi.org/10.1016/0300-9629(71)90138-1 Lawrence Chia-Huang Wang, Jack W. Hudson Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus, Comparative Biochemistry and Physiology Part A: Physiology 38, no.11 (Jan 1971): 59–90.https://doi.org/10.1016/0300-9629(71)90098-3J.S. Hart RODENTS, (Jan 1971): 1–149.https://doi.org/10.1016/B978-0-12-747602-5.50007-1Brian K. McNab Body Weight and the Energetics of Temperature Regulation, Journal of Experimental Biology 53, no.22 (Oct 1970): 329–348.https://doi.org/10.1242/jeb.53.2.329Richard E MacMillen, Anthony K Lee Energy metabolism and pulmocutaneous water loss of Australian hopping mice, Comparative Biochemistry and Physiology 35, no.22 (Jul 1970): 355–369.https://doi.org/10.1016/0010-406X(70)90601-8Bruce A Wunder Temperature regulation and the effects of water restriction on Merriams's chipmunk, Eutamias merriami, Comparative Biochemistry and Physiology 33, no.22 (Mar 1970): 385–403.https://doi.org/10.1016/0010-406X(70)90357-9George A. Bartholomew, William R. Dawson, Robert C. Lasiewski Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea, Zeitschrift f�r Vergleichende Physiologie 70, no.22 (Jan 1970): 196–209.https://doi.org/10.1007/BF00297716Lawrence Chia-Huang Wang, Jack W. Hudson Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse, perognathus hispidus, Comparative Biochemistry and Physiology 32, no.22 (Jan 1970): 275–293.https://doi.org/10.1016/0010-406X(70)90941-2Brian K. McNab The economics of temperature regulation in neutropical bats, Comparative Biochemistry and Physiology 31, no.22 (Oct 1969): 227–268.https://doi.org/10.1016/0010-406X(69)91651-XJames H. Brown, Anthony K. Lee BERGMANN'S RULE AND CLIMATIC ADAPTATION IN WOODRATS ( NEOTOMA ), Evolution 23, no.22 (May 2017): 329–338.https://doi.org/10.1111/j.1558-5646.1969.tb03515.xMichael H. Smith, John T. McGinnis Relationships of latitude, altitude, and body size to litter size and mean annual production of offspring inPeromyscus, Researches on Population Ecology 10, no.22 (Dec 1968): 115–126.https://doi.org/10.1007/BF02510868Robert C. Lasiewski, Wesley W. Weathers, Marvin H. Bernstein Physiological responses of the giant hummingbird, Patagona gigas, Comparative Biochemistry and Physiology 23, no.33 (Dec 1967): 797–813.https://doi.org/10.1016/0010-406X(67)90342-8Roger E. Carpenter, Jeffrey B. Graham Physiological responses to temperature in the long-nosed bat, Leptonycteris sanborni, Comparative Biochemistry and Physiology 22, no.33 (Sep 1967): 709–722.https://doi.org/10.1016/0010-406X(67)90764-5Paul Licht, Philip Leitner Physiological responses to high environmental temperatures in three species of microchiropteran bats, Comparative Biochemistry and Physiology 22, no.22 (Aug 1967): 371–387.https://doi.org/10.1016/0010-406X(67)90601-9Clyde F. Herreid, Brina Kessel Thermal conductance in birds and mammals, Comparative Biochemistry and Physiology 21, no.22 (May 1967): 405–414.https://doi.org/10.1016/0010-406X(67)90802-XPhilip Leitner, John E. Nelson Body temperature, oxygen consumption and heart rate in the Australian false vampire bat, Macroderma gigas, Comparative Biochemistry and Physiology 21, no.11 (Apr 1967): 65–74.https://doi.org/10.1016/0010-406X(67)90115-6Robert C. Lasiewski Physiological Responses of the Blue-Throated and Rivoli's Hummingbirds, The Auk 84, no.11 (Jan 1967): 34–48.https://doi.org/10.2307/4083253V. A. Tucker Oxygen Consumption of a Flying Bird, Science 154, no.37453745 (Oct 1966): 150–151.https://doi.org/10.1126/science.154.3745.150Philip Leitner Body temperature, oxygen consumption, heart rate and shivering in the California mastiff bat, Eumops perotis, Comparative Biochemistry and Physiology 19, no.22 (Oct 1966): 431–443.https://doi.org/10.1016/0010-406X(66)90152-6Knut Schmidt-Nielsen, T. J. Dawson, E. C. Crawford Temperature regulation in the echidna (Tachyglossus aculeatus), Journal of Cellular Physiology 67, no.11 (Feb 1966): 63–71.https://doi.org/10.1002/jcp.1040670108Vance A. Tucker Oxygen Transport by the Circulatory System of the Green Iguana ( Iguana Iguana ) at Different Body Temperatures, Journal of Experimental Biology 44, no.11 (Feb 1966): 77–92.https://doi.org/10.1242/jeb.44.1.77RICHARD C. BIRKEBAK Heat Transfer in Biological Systems, (Jan 1966): 269–344.https://doi.org/10.1016/B978-1-4831-9978-8.50011-6Richard E Macmillen Aestivation in the cactus mouse, Peromyscus eremicus, Comparative Biochemistry and Physiology 16, no.22 (Oct 1965): 227–248.https://doi.org/10.1016/0010-406X(65)90062-9Vance A. Tucker Oxygen consumption, thermal conductance, and torpor in the California pocket mousePerognathus californicus, Journal of Cellular and Comparative Physiology 65, no.33 (Jun 1965): 393–403.https://doi.org/10.1002/jcp.1030650313R. C. Lasiewski, S. H. Hubbard, W. R. Moberly Energetic Relationships of a Very Small Passerine Bird, The Condor 66, no.33 (May 1964): 212–220.https://doi.org/10.2307/1365646 George A. Bartholomew , Philip Leitner , and John E. Nelson Body Temperature, Oxygen Consumption, and Heart Rate in Three Species of Australian Flying Foxes, Physiological Zoology 37, no.22 (Sep 2015): 179–198.https://doi.org/10.1086/physzool.37.2.30152330 Robert C. Lasiewski Body Temperatures, Heart and Breathing Rate, and Evaporative Water Loss in Hummingbirds, Physiological Zoology 37, no.22 (Sep 2015): 212–223.https://doi.org/10.1086/physzool.37.2.30152332 Robert C. Lasiewski Oxygen Consumption of Torpid, Resting, Active, and Flying Hummingbirds, Physiological Zoology 36, no.22 (Sep 2015): 122–140.https://doi.org/10.1086/physzool.36.2.30155436Peter Morrison Modification of Body Temperature by Activity in Brazilian Hummingbirds, The Condor 64, no.44 (Jul 1962): 315–323.https://doi.org/10.2307/1365371Kjoll Johansen Responses to heat and cold in lower mammals, International Journal of Biometeorology 6, no.11 (Mar 1962): 3–28.https://doi.org/10.1007/BF02187009 George A. Bartholomew , and Jack W. Hudson Hibernation, Estivation, Temperature Regulation, Evaporative Water Loss, and Heart Rate of the Pigmy Possum, Cercaertus nanus, Physiological Zoology 35, no.11 (Sep 2015): 94–107.https://doi.org/10.1086/physzool.35.1.30152716 George A. Bartholomew , and Richard E. MacMillen Oxygen Consumption, Estivation, and Hibernation in the Kangaroo Mouse, Microdipodops pallidus, Physiological Zoology 34, no.33 (Sep 2015): 177–183.https://doi.org/10.1086/physzool.34.3.30152696
Referência(s)