Water Economy and Metabolism of Two Estrildine Finches

1965; University of Chicago Press; Volume: 38; Issue: 1 Linguagem: Inglês

10.1086/physzool.38.1.30152342

ISSN

1937-4267

Autores

Tom J. Cade, Catherine A. Tobin, Ann E. Gold,

Tópico(s)

Animal Nutrition and Physiology

Resumo

Previous articleNext article No AccessWater Economy and Metabolism of Two Estrildine FinchesTom J. Cade, Catherine A. Tobin, and Ann GoldTom J. Cade, Catherine A. Tobin, and Ann GoldPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by Volume 38, Number 1Jan., 1965 Article DOIhttps://doi.org/10.1086/physzool.38.1.30152342 Views: 17Total views on this site Citations: 95Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1965 The University of ChicagoPDF download Crossref reports the following articles citing this article:Diederik Strubbe, Laura Jiménez, A. Márcia Barbosa, Amy J. S. Davis, Luc Lens, Carsten Rahbek Mechanistic models project bird invasions with accuracy, Nature Communications 14, no.11 (May 2023).https://doi.org/10.1038/s41467-023-38329-4Cesare Pacioni, Marina Sentís, Anvar Kerimov, Andrey Bushuev, Luc Lens, Diederik Strubbe Seasonal variation in thermoregulatory capacity of three closely related Afrotropical Estrildid finches introduced to Europe, Journal of Thermal Biology 113 (Apr 2023): 103534.https://doi.org/10.1016/j.jtherbio.2023.103534Anaïs Pessato, Andrew E. McKechnie, Mylene M. Mariette A prenatal acoustic signal of heat affects thermoregulation capacities at adulthood in an arid-adapted bird, Scientific Reports 12, no.11 (Apr 2022).https://doi.org/10.1038/s41598-022-09761-1Sara E. Lipshutz, Clara R. Howell, Aaron M. Buechlein, Douglas B. Rusch, Kimberly A. Rosvall, Elizabeth P. Derryberry How thermal challenges change gene regulation in the songbird brain and gonad: Implications for sexual selection in our changing world, Molecular Ecology 31, no.1313 (May 2022): 3613–3626.https://doi.org/10.1111/mec.16506Philip C. Withers, Christine E. Cooper, Alexander N. Larcombe Relative Water Economy Is a Useful Index of Aridity Tolerance for Australian Poephiline Finches, Birds 3, no.22 (Mar 2022): 172–183.https://doi.org/10.3390/birds3020012Shannon R Conradie, Stephan M Woodborne, Blair O Wolf, Anaïs Pessato, Mylene M Mariette, Andrew E McKechnie, Steven Cooke Global heating poses a serious threat to Australia's birds: reply to Pacheco-Fuentes et al ., Conservation Physiology 10, no.11 (Mar 2022).https://doi.org/10.1093/conphys/coac011Lucas Navarrete, Francisco Bozinovic, Isaac Peña-Villalobos, Carolina Contreras-Ramos, Juan C. Sanchez-Hernandez, Seth D. Newsome, Roberto F. Nespolo, Pablo Sabat Integrative Physiological Responses to Acute Dehydration in the Rufous-Collared Sparrow: Metabolic, Enzymatic, and Oxidative Traits, Frontiers in Ecology and Evolution 9 (Nov 2021).https://doi.org/10.3389/fevo.2021.767280Pablo Sabat, Seth D. Newsome, Stephanie Pinochet, Roberto Nespolo, Juan Carlos Sanchez-Hernandez, Karin Maldonado, Alexander R. Gerson, Zachary D. Sharp, John P. Whiteman Triple Oxygen Isotope Measurements (Δ'17O) of Body Water Reflect Water Intake, Metabolism, and δ18O of Ingested Water in Passerines, Frontiers in Physiology 12 (Sep 2021).https://doi.org/10.3389/fphys.2021.710026Mark E Hauber, Matthew IM Louder, Simon C Griffith Neurogenomic insights into the behavioral and vocal development of the zebra finch, eLife 10 (Jun 2021).https://doi.org/10.7554/eLife.61849Raymond M. Danner, Casey M. Coomes, Elizabeth P. Derryberry Simulated heat waves reduce cognitive and motor performance of an endotherm, Ecology and Evolution 11, no.55 (Jan 2021): 2261–2272.https://doi.org/10.1002/ece3.7194Michał S. Wojciechowski, Anna Kowalczewska, Roger Colominas-Ciuró, Małgorzata Jefimow Phenotypic flexibility in heat production and heat loss in response to thermal and hydric acclimation in the zebra finch, a small arid-zone passerine, Journal of Comparative Physiology B 191, no.11 (Oct 2020): 225–239.https://doi.org/10.1007/s00360-020-01322-0Anaïs Pessato, Andrew E. McKechnie, Katherine L. Buchanan, Mylene M. Mariette Vocal panting: a novel thermoregulatory mechanism for enhancing heat tolerance in a desert-adapted bird, Scientific Reports 10, no.11 (Nov 2020).https://doi.org/10.1038/s41598-020-75909-6Christine Elizabeth Cooper, Laura Leilani Hurley, Pierre Deviche, Simon Charles Griffith Physiological responses of wild zebra finches ( Taeniopygia guttata ) to heatwaves, The Journal of Experimental Biology 223, no.1212 (May 2020): jeb225524.https://doi.org/10.1242/jeb.225524C.E. Cooper, L.L. Hurley, S.C. Griffith Effect of acute exposure to high ambient temperature on the thermal, metabolic and hygric physiology of a small desert bird, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology (Feb 2020): 110684.https://doi.org/10.1016/j.cbpa.2020.110684Shannon R Conradie, Stephan M Woodborne, Blair O Wolf, Anaïs Pessato, Mylene M Mariette, Andrew E McKechnie Avian mortality risk during heat waves will increase greatly in arid Australia during the 21st century, Conservation Physiology 8, no.11 (Jun 2020).https://doi.org/10.1093/conphys/coaa048Christine Elizabeth Cooper, Philip Carew Withers, Laura Leilani Hurley, Simon Charles Griffith The Field Metabolic Rate, Water Turnover, and Feeding and Drinking Behavior of a Small Avian Desert Granivore During a Summer Heatwave, Frontiers in Physiology 10 (Nov 2019).https://doi.org/10.3389/fphys.2019.01405Jowita Niedojadlo, Agata Bury, Mariusz Cichoń, Edyta T. Sadowska, Ulf Bauchinger Lower haematocrit, haemoglobin and red blood cell number in zebra finches acclimated to cold compared to thermoneutral temperature, Journal of Avian Biology 49, no.33 (Apr 2018): jav-01596.https://doi.org/10.1111/jav.01596D.B. Donato, D.M. Madden-Hallett, G.B. Smith, W. Gursansky Heap leach cyanide irrigation and risk to wildlife: Ramifications for the international cyanide management code, Ecotoxicology and Environmental Safety 140 (Jun 2017): 271–278.https://doi.org/10.1016/j.ecoenv.2017.02.033Imran Khaliq, Katrin Böhning-Gaese, Roland Prinzinger, Markus Pfenninger, Christian Hof The influence of thermal tolerances on geographical ranges of endotherms, Global Ecology and Biogeography 26, no.66 (Mar 2017): 650–668.https://doi.org/10.1111/geb.12575Yoonseob Lim, Ryan Lagoy, Barbara G Shinn-Cunningham, Timothy J Gardner Transformation of temporal sequences in the zebra finch auditory system, eLife 5 (Nov 2016).https://doi.org/10.7554/eLife.18205E. Tobias Krause, Tim Ruploh Captive domesticated zebra finches ( Taeniopygia guttata ) have increased plasma corticosterone concentrations in the absence of bathing water, Applied Animal Behaviour Science 182 (Sep 2016): 80–85.https://doi.org/10.1016/j.applanim.2016.06.003Joanna Rutkowska, Edyta T. Sadowska, Mariusz Cichoń, Ulf Bauchinger Increased fat catabolism sustains water balance during fasting in zebra finches, The Journal of Experimental Biology 219, no.1717 (Aug 2016): 2623–2628.https://doi.org/10.1242/jeb.138966S. J. J. F. Davies, T. A. Knight Variability in the drinking behaviour of individual emus Dromaius novaehollandiae, The Rangeland Journal 38, no.55 (Jan 2016): 489.https://doi.org/10.1071/RJ16059Nora H. Prior, Kiran K. Soma Neuroendocrine regulation of long-term pair maintenance in the monogamous zebra finch, Hormones and Behavior 76 (Nov 2015): 11–22.https://doi.org/10.1016/j.yhbeh.2015.04.014M. C. Whitfield, B. Smit, A. E. McKechnie, B. O. Wolf Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines, Journal of Experimental Biology 218, no.1111 (Jun 2015): 1705–1714.https://doi.org/10.1242/jeb.121749Sharon E. Lynn, Nicole Perfito, Daisy Guardado, George E. Bentley Food, stress, and circulating testosterone: Cue integration by the testes, not the brain, in male zebra finches (Taeniopygia guttata), General and Comparative Endocrinology 215 (May 2015): 1–9.https://doi.org/10.1016/j.ygcen.2015.03.010Andreas Nord, Maria I. Sandell, Jan-Åke Nilsson Female zebra finches compromise clutch temperature in energetically demanding incubation conditions, Functional Ecology 24, no.55 (Apr 2010): 1031–1036.https://doi.org/10.1111/j.1365-2435.2010.01719.xNicole Perfito The reproductive and stress physiology of Zebra Finches in context: integrating field and laboratory studies, Emu - Austral Ornithology 110, no.33 (Dec 2016): 199–208.https://doi.org/10.1071/MU09091Pablo Sabat, Grisel Cavieres, Claudio Veloso, Mauricio Canals Water and energy economy of an omnivorous bird: Population differences in the Rufous-collared Sparrow (Zonotrichia capensis), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 144, no.44 (Aug 2006): 485–490.https://doi.org/10.1016/j.cbpa.2006.04.016Nicole Perfito, George Bentley, Michaela Hau Tonic Activation of Brain GnRH Immunoreactivity despite Reduction of Peripheral Reproductive Parameters in Opportunistically Breeding Zebra Finches, Brain, Behavior and Evolution 67, no.33 (Mar 2006): 123–134.https://doi.org/10.1159/000090977Don Bradshaw Vertebrate Ecophysiology, 97 (Jun 2012).https://doi.org/10.1017/CBO9780511840906Cherilyn T. Burton, Wesley W. Weathers Energetics and thermoregulation of the Gouldian Finch ( Erythrura gouldiae ), Emu - Austral Ornithology 103, no.11 (Dec 2016): 1–10.https://doi.org/10.1071/MU02030 B. Irene Tieleman , Joseph B. Williams , and Michael E. Buschur Physiological Adjustments to Arid and Mesic Environments in Larks (Alaudidae) B. I. Tieleman, J. B. Williams, and M. E. Buschur, Physiological and Biochemical Zoology 75, no.33 (Jul 2015): 305–313.https://doi.org/10.1086/341998Frank Johnson, Michael E Rashotte Food availability but not cold ambient temperature affects undirected singing in adult male zebra finches, Physiology & Behavior 76, no.11 (May 2002): 9–20.https://doi.org/10.1016/S0031-9384(02)00685-6Lee B. Astheimer, William A. Buttemer Changes in latitude, changes in attitude: a perspective on ecophysiological studies of Australian birds, Emu - Austral Ornithology 102, no.11 (Dec 2016): 19–27.https://doi.org/10.1071/MU01031Michael E Rashotte, Elena V Sedunova, Frank Johnson, Iu.F Pastukhov Influence of food and water availability on undirected singing and energetic status in adult male zebra finches (Taeniopygia guttata), Physiology & Behavior 74, no.4-54-5 (Nov 2001): 533–541.https://doi.org/10.1016/S0031-9384(01)00600-X Heat Production and Evaporative Water Loss of Dune Larks from the Namib Desert, The Condor 101, no.22 (May 1999): 432–438.https://doi.org/10.2307/1370011 B. Irene Tieleman and Joseph B. Williams The Role of Hyperthermia in the Water Economy of Desert Birds B. I. Tieleman and J. B. Williams, Physiological and Biochemical Zoology 72, no.11 (Jul 2015): 87–100.https://doi.org/10.1086/316640Richard E. MacMillen, David S. Hinds Water Economy of Granivorous Birds: California House Finches, The Condor 100, no.33 (Aug 1998): 493–503.https://doi.org/10.2307/1369715Michele Merola-Zwartjes Metabolic Rate, Temperature Regulation, and the Energetic Implications of Roost Nests in the Bananaquit (Coereba flaveola), The Auk 115, no.33 (Jul 1998): 780–786.https://doi.org/10.2307/4089429Wesley W. Weathers Energetics and Thermoregulation by Small Passerines of the Humid, Lowland Tropics, The Auk 114, no.33 (Jul 1997): 341–353.https://doi.org/10.2307/4089237Joseph B. Williams A Phylogenetic Perspective of Evaporative Water Loss in Birds, The Auk 113, no.22 (Apr 1996): 457–472.https://doi.org/10.2307/4088912Richard Zann, Maurizio Rossetto Zebra Finch Incubation: Brood patch, Egg Temperature and Thermal Properties of the Nest, Emu - Austral Ornithology 91, no.22 (Dec 2016): 107–120.https://doi.org/10.1071/MU9910107R Prinzinger, A Preßmar, E Schleucher Body temperature in birds, Comparative Biochemistry and Physiology Part A: Physiology 99, no.44 (Jan 1991): 499–506.https://doi.org/10.1016/0300-9629(91)90122-SS.M. Evans, Rachel Neems, Charlotte Pagendam Drinking Skills in Estrildid Finches, Emu - Austral Ornithology 89, no.33 (Dec 2016): 177–181.https://doi.org/10.1071/MU9890177 Zeev Arad , Idit Gavrieli-Levin , Uri Eylath , and Jacob Marder Effect of Dehydration on Cutaneous Water Evaporation in Heat-Exposed Pigeons (Columba livia), Physiological Zoology 60, no.66 (Sep 2015): 623–630.https://doi.org/10.1086/physzool.60.6.30159978Carol M. Vleck, J. Priedkalns Reproduction in Zebra Finches: Hormone Levels and Effect of Dehydration, The Condor 87, no.11 (Feb 1985): 37–46.https://doi.org/10.2307/1367129Wesley W Weathers, Kenneth A Nagy Daily energy expenditure and water flux in black-rumped waxbills (Estrilda troglodytes), Comparative Biochemistry and Physiology Part A: Physiology 77, no.33 (Jan 1984): 453–458.https://doi.org/10.1016/0300-9629(84)90211-1BRIAN K. MCNAB Energetics, body size, and the limits to endothermy, Journal of Zoology 199, no.11 (Aug 2009): 1–29.https://doi.org/10.1111/j.1469-7998.1983.tb06114.xZ Arad Effect of water deprivation and heat exposure on body weight loss and drinking capacity in four breeds of fowl (Gallus domesticus), Comparative Biochemistry and Physiology Part A: Physiology 73, no.22 (Jan 1982): 297–299.https://doi.org/10.1016/0300-9629(82)90073-1William R Dawson Evaporative losses of water by birds, Comparative Biochemistry and Physiology Part A: Physiology 71, no.44 (Jan 1982): 495–509.https://doi.org/10.1016/0300-9629(82)90198-0 Wesley W. Weathers Physiological Thermoregulation in Heat-Stressed Birds: Consequences of Body Size, Physiological Zoology 54, no.33 (Sep 2015): 345–361.https://doi.org/10.1086/physzool.54.3.30159949William R. Dawson Adjustments of Australian birds to thermal conditions and water scarcity in arid zones, (Jan 1981): 1649–1674.https://doi.org/10.1007/978-94-009-8629-9_58Claus Bech, Uffe Midtg�rd Brain temperature and therete mirabile ophthalmicum in the Zebra finch (Poephila guttata), Journal of Comparative Physiology ? B 145, no.11 (Jan 1981): 89–93.https://doi.org/10.1007/BF00782598Jiro Kikkawa Seasonality of Nesting by Zebra Finches at Armidale, NSW, Emu - Austral Ornithology 80, no.11 (Dec 2016): 13–20.https://doi.org/10.1071/MU9800013B. ROBINZON, M.R. KARE, G.K. BEAUCHAMP Comparative Aspects of Salt Preference and Intake in Birds, (Jan 1980): 69–81.https://doi.org/10.1016/B978-0-12-397750-2.50013-6 William R. Dawson , Cynthia Carey , Curtis S. Adkisson , and Robert D. Ohmart Responses of Brewer's and Chipping Sparrows to Water Restriction, Physiological Zoology 52, no.44 (Sep 2015): 529–541.https://doi.org/10.1086/physzool.52.4.30155943Wesley W. Weathers Climatic adaptation in Svian standard metabolic rate, Oecologia 42, no.11 (Jan 1979): 81–89.https://doi.org/10.1007/BF00347620D.H. Thomas, J.G. Phillips Studies in avian adrenal steroid function, General and Comparative Endocrinology 26, no.33 (Jul 1975): 404–411.https://doi.org/10.1016/0016-6480(75)90094-5Roland Sossinka Der Einfluß von Durstperioden auf die Schilddrüsen- und Gonadenaktivität und ihre Bedeutung für die Brutperiodik des Zebrafinken (Taeniopygia castanotis Gould), Journal of Ornithology 115, no.22 (Apr 1974): 128–141.https://doi.org/10.1007/BF01643286Oscar W. Johnson Relative thickness of the renal medulla in birds, Journal of Morphology 142, no.33 (Mar 1974): 277–284.https://doi.org/10.1002/jmor.1051420304Oscar W. Johnson, Robert D. Ohmart The renal medulla and water economy in vesper sparrows (Pooecetes gramineus), Comparative Biochemistry and Physiology Part A: Physiology 44, no.22 (Feb 1973): 655–661.https://doi.org/10.1016/0300-9629(73)90517-3 B. G. Collins , and S. D. Bradshaw Studies on the Metabolism, Thermoregulation, and Evaporative Water Losses of Two Species of Australian Rats, Rattus villosissimus and Rattus rattus, Physiological Zoology 46, no.11 (Sep 2015): 1–21.https://doi.org/10.1086/physzool.46.1.30152512Roland Sossinka Langfristiges Durstvermögen wilder und domestizierter Zebrafinken(Taeniopygia guttata castanotis Gould), Journal of Ornithology 113, no.44 (Oct 1972): 418–426.https://doi.org/10.1007/BF01647604 William Hesse , and Sheldon Lustick A Comparison of the Water Requirements of Marsh and Upland Redwing Blackbirds (Agelaius phoeniceus), Physiological Zoology 45, no.33 (Sep 2015): 196–203.https://doi.org/10.1086/physzool.45.3.30152498Charles D. Fisher, Eric Lindgren, William R. Dawson Drinking Patterns and Behavior of Australian Desert Birds in Relation to Their Ecology and Abundance, The Condor 74, no.22 (Jul 1972): 111–136.https://doi.org/10.2307/1366276Roger S. Seymour Convective heat transfer in the respiratory systems of panting animals, Journal of Theoretical Biology 35, no.11 (Apr 1972): 119–127.https://doi.org/10.1016/0022-5193(72)90197-XBent Krag, Erik Skadhauge Renal salt and water excretion in the budgerygah (Melopsittacus undulatus), Comparative Biochemistry and Physiology Part A: Physiology 41, no.33 (Mar 1972): 667–683.https://doi.org/10.1016/0300-9629(72)90021-7R.H. Drent, B. Stonehouse Thermoregulatory responses of the peruvian penguin, Spheniscus humboldti, Comparative Biochemistry and Physiology Part A: Physiology 40, no.33 (Nov 1971): 689–710.https://doi.org/10.1016/0300-9629(71)90254-4Ernest J. Willoughby Drinking Responses of the Red Crossbill (Loxia curvirostra) to Solutions of NaCl, MgCl 2 , and CaCl 2, The Auk 88, no.44 (Oct 1971): 828–838.https://doi.org/10.2307/4083841Cynthia Carey, Martin L. Morton A comparison of salt and water regulation in California quail (Lophortyx californicus) and Gambel's quail (Lophortyx gambelii), Comparative Biochemistry and Physiology Part A: Physiology 39, no.11 (May 1971): 75–101.https://doi.org/10.1016/0300-9629(71)90349-5Sheldon Lustick Plumage Color and Energetics, The Condor 73, no.11 (Apr 1971): 121–122.https://doi.org/10.2307/1366139Ralph R. Moldenhauer The effects of temperature on the metabolic rate and evaporative water loss of the sage sparrow Amphispiza belli nevadensis, Comparative Biochemistry and Physiology 36, no.33 (Oct 1970): 579–587.https://doi.org/10.1016/0010-406X(70)91033-9Ralph R. Moldenhauer, John A. Wiens The Water Economy of the Sage Sparrow, Amphispiza belli nevadensis, The Condor 72, no.33 (Jul 1970): 265–275.https://doi.org/10.2307/1366003Oscar W. Johnson, John N. Mugaas Quantitative and Organizational Features of the Avian Renal Medulla, The Condor 72, no.33 (Jul 1970): 288–292.https://doi.org/10.2307/1366005Knut Schmidt-Nielsen, F.Reed Hainsworth, David E. Murrish Counter-current heat exchange in the respiratory passages: Effect on water and heat balance, Respiration Physiology 9, no.22 (May 1970): 263–276.https://doi.org/10.1016/0034-5687(70)90075-7John N. Mugaas, James R. Templeton Thermoregulation in the Red-Breasted Nuthatch (Sitta canadensis), The Condor 72, no.22 (Apr 1970): 125–132.https://doi.org/10.2307/1366621Robert D. Ohmart, E. Linwood Smith Use of Sodium Chloride Solutions by the Brewer's Sparrow and Tree Sparrow, The Auk 87, no.22 (Apr 1970): 329–341.https://doi.org/10.2307/4083924F.M.Anne McNabb A comparative study of water balance in three species of quail—I. Water turnover in the absence of temperature stress, Comparative Biochemistry and Physiology 28, no.33 (Mar 1969): 1045–1058.https://doi.org/10.1016/0010-406X(69)90546-5Ernest J. Willoughby Evaporative water loss of a small xerophilous finch, Lonchura malabarica, Comparative Biochemistry and Physiology 28, no.22 (Feb 1969): 655–664.https://doi.org/10.1016/0010-406X(69)92096-9S. Charles Kendeigh Tolerance of Cold and Bergmann's Rule, The Auk 86, no.11 (Jan 1969): 13–25.https://doi.org/10.2307/4083537Ernest J. Willoughby Water economy of the stark's lark and grey-backed finch-lark from the Namib Desert of South West Africa, Comparative Biochemistry and Physiology 27, no.33 (Dec 1968): 723–745.https://doi.org/10.1016/0010-406X(68)90614-2Eugene C. Crawford,, Robert C. Lasiewski Oxygen Consumption and Respiratory Evaporation of the Emu and Rhea, The Condor 70, no.44 (Oct 1968): 333–339.https://doi.org/10.2307/1365927William R. Dawson, George A. Bartholomew TEMPERATURE REGULATION AND WATER ECONOMY OF DESERT BIRDS, (Jan 1968): 357–394.https://doi.org/10.1016/B978-1-4831-9868-2.50015-3Robert C. Lasiewski, Wesley W. Weathers, Marvin H. Bernstein Physiological responses of the giant hummingbird, Patagona gigas, Comparative Biochemistry and Physiology 23, no.33 (Dec 1967): 797–813.https://doi.org/10.1016/0010-406X(67)90342-8Lewis Greenwald, Ward B. Stone, Tom J. Cade Physiological adjustments of the budgerygah (Melopsittacus undulatus) to dehydrating conditions, Comparative Biochemistry and Physiology 22, no.11 (Jul 1967): 91–100.https://doi.org/10.1016/0010-406X(67)90170-3William J. Hamilton, Frank Heppner Radiant Solar Energy and the Function of Black Homeotherm Pigmentation: An Hypothesis, Science 155, no.37593759 (Jan 1967): 196–197.https://doi.org/10.1126/science.155.3759.196Robert C. Lasiewski, William R. Dawson A Re-Examination of the Relation between Standard Metabolic Rate and Body Weight in Birds, The Condor 69, no.11 (Jan 1967): 13–23.https://doi.org/10.2307/1366368Robert C. Lasiewski Physiological Responses of the Blue-Throated and Rivoli's Hummingbirds, The Auk 84, no.11 (Jan 1967): 34–48.https://doi.org/10.2307/4083253Robert C Lasiewski, Alfredo L Acosta, Marvin H Bernstein Evaporative water loss in birds—I. Characteristics of the open flow method of determination, and their relation to estimates of thermoregulatory ability, Comparative Biochemistry and Physiology 19, no.22 (Oct 1966): 445–457.https://doi.org/10.1016/0010-406X(66)90153-8Robert C Lasiewski, Alfredo L Acosta, Marvin H Bernstein Evaporative water loss in birds—II. A modified method for determination by direct weighing, Comparative Biochemistry and Physiology 19, no.22 (Oct 1966): 459–470.https://doi.org/10.1016/0010-406X(66)90154-XMichael Smyth, George A. Bartholomew The Water Economy of the Black-Throated Sparrow and the Rock Wren, The Condor 68, no.55 (Sep 1966): 447–458.https://doi.org/10.2307/1365317Brian K. McNab An Analysis of the Body Temperatures of Birds, The Condor 68, no.11 (Jan 1966): 47–55.https://doi.org/10.2307/1365174Klaus Immelmann Versuch einer ökologischen Verbreitungsanalyse beim australischen Zebrafinken,Taeniopygia guttata castanotis (Gould), Journal für Ornithologie 106, no.44 (Oct 1965): 415–430.https://doi.org/10.1007/BF01673432T. J. Cade SURVIVAL OF THE SCALY-FEATHERED FINCH SPOROPIPES SQUAMIFRONS WITHOUT DRINKING WATER, Ostrich 36, no.33 (Oct 2010): 131–132.https://doi.org/10.1080/00306525.1965.9633874

Referência(s)
Altmetric
PlumX