Precision of Thermoregulation and Its Relation to Environmental Factors in the Desert Iguana, Dipsosaurus dorsalis
1967; University of Chicago Press; Volume: 40; Issue: 1 Linguagem: Inglês
10.1086/physzool.40.1.30152438
ISSN1937-4267
Autores Tópico(s)Turtle Biology and Conservation
ResumoPrevious articleNext article No AccessPrecision of Thermoregulation and Its Relation to Environmental Factors in the Desert Iguana, Dipsosaurus dorsalisCalvin B. DeWittCalvin B. DeWittPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 40, Number 1Jan., 1967 Article DOIhttps://doi.org/10.1086/physzool.40.1.30152438 Views: 200Total views on this site Citations: 128Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1967 The University of ChicagoPDF download Crossref reports the following articles citing this article:M. A. Domínguez‐Godoy, R. Hudson, B. Montoya, E. Bastiaans, A. H. Díaz de la Vega‐Pérez Too cool to fight: Is ambient temperature associated with male aggressive behavior in the mesquite lizard?, Journal of Zoology 18 (May 2022).https://doi.org/10.1111/jzo.12979Grant A. Duffy, Arda C. Kuyucu, Jessica L. Hoskins, Eleanor M. Hay, Steven L. Chown Adequate sample sizes for improved accuracy of thermal trait estimates, Functional Ecology 35, no.1212 (Oct 2021): 2647–2662.https://doi.org/10.1111/1365-2435.13928Danilo Giacometti, Katharine T. Yagi, Curtis R. Abney, Matthew P. Jung, Glenn J. Tattersall Staying warm is not always the norm: behavioural differences in thermoregulation of two snake species, Canadian Journal of Zoology 67 (Aug 2021): 974–983.https://doi.org/10.1139/cjz-2021-0135Nicholas B. Sakich, Glenn J. Tattersall Bearded dragons ( Pogona vitticeps ) with reduced scalation lose water faster but do not have substantially different thermal preferences, Journal of Experimental Biology 224, no.1212 (Jun 2021).https://doi.org/10.1242/jeb.234427Ian R. G. Black, Laura K. Aedy, Glenn J. Tattersall Hot and covered: how dragons face the heat and thermoregulate, Journal of Comparative Physiology B 191, no.33 (Feb 2021): 545–552.https://doi.org/10.1007/s00360-020-01332-yCarlos A. Navas, Sidney F. Gouveia, Jaiber J. Solano-Iguarán, Marcela A. Vidal, Leonardo D. Bacigalupe Amphibian responses in experimental thermal gradients: Concepts and limits for inference, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 7 (Feb 2021): 110576.https://doi.org/10.1016/j.cbpb.2021.110576Miguel A. Domínguez-Godoy, Robyn Hudson, Hibrahim A. Pérez-Mendoza, Sergio Ancona, Aníbal H. Díaz de la Vega-Pérez Living on the edge: Lower thermal quality but greater survival probability at a high altitude mountain for the mesquite lizard (Sceloporus grammicus), Journal of Thermal Biology 94 (Dec 2020): 102757.https://doi.org/10.1016/j.jtherbio.2020.102757Fernando Duran, Jorgelina M. Boretto, Nora R. Ibargüengoytía Decrease in preferred temperature in response to an immune challenge in lizards from cold environments in Patagonia, Argentina, Journal of Thermal Biology 93 (Oct 2020): 102706.https://doi.org/10.1016/j.jtherbio.2020.102706Caleb L. Loughran, Blair O. Wolf The functional significance of panting as a mechanism of thermoregulation and its relationship to the critical thermal maxima in lizards, The Journal of Experimental Biology 223, no.1717 (Aug 2020): jeb224139.https://doi.org/10.1242/jeb.224139Nadia Vicenzi, Alejandro Laspiur, Paola L. Sassi, Rubén Massarelli, John Krenz, Nora R. Ibargüengoytía Impact of temperature on bite force and bite endurance in the leopard iguana ( Diplolaemus leopardinus ) in the Andes Mountains, Journal of Experimental Biology 223, no.1212 (Jun 2020).https://doi.org/10.1242/jeb.221382Morgan A. Herrmann, Stephanie M. Campos, Emília P. Martins, Cristina Romero-Diaz Eye-Bulging Behavior in Lizards of the Genus Sceloporus: A Role in Chemical Communication?, Copeia 108, no.22 (Apr 2020): 309.https://doi.org/10.1643/CE-19-249Nora R. Ibargüengoytía, Erika Kubisch, Facundo Cabezas-Cartes, Jimena B. Fernández, Fernando Duran, Carla Piantoni, Marlin S. Medina, Barry Sinervo Effects of Acute and Chronic Environmental Disturbances on Lizards of Patagonia, (Aug 2020): 373–405.https://doi.org/10.1007/978-3-030-42752-8_13 , ( 2020): 293.https://doi.org/10.1016/B978-0-12-820244-9.16001-9Rafael A. Lara-Resendiz, Patricia Galina-Tessaro, Ana Gisel Pérez-Delgadillo, Jorge H. Valdez-Villavicencio, Fausto R. Méndez-de La Cruz Efectos del cambio climático en una especie de lagartija termófila de amplia distribución (Dipsosaurus dorsalis): un enfoque ecofisiológico, Revista Mexicana de Biodiversidad 90, no.11 (Sep 2019).https://doi.org/10.22201/ib.20078706e.2019.90.2888Luciana Leirião, Carla Piantoni, Pedro L. Ribeiro, Carlos A. Navas Independent influence of thermoregulatory cost on the lower and upper set-points of a heliothermic lizard, Behavioural Processes 164 (Jul 2019): 17–24.https://doi.org/10.1016/j.beproc.2019.04.004Raquel A. Garcia, Jessica L. Allen, Susana Clusella‐Trullas Rethinking the scale and formulation of indices assessing organism vulnerability to warmer habitats, Ecography 42, no.55 (Jan 2019): 1024–1036.https://doi.org/10.1111/ecog.04226Sean Tomlinson The mathematics of thermal sub-optimality: Nonlinear regression characterization of thermal performance of reptile metabolic rates, Journal of Thermal Biology 81 (Apr 2019): 49–58.https://doi.org/10.1016/j.jtherbio.2019.02.008César Martín-Gómez, Amaia Zuazua-Ros, Javier Bermejo-Busto, Enrique Baquero, Rafael Miranda, Cristina Sanz Potential strategies offered by animals to implement in buildings׳ energy performance: Theory and practice, Frontiers of Architectural Research 8, no.11 (Mar 2019): 17–31.https://doi.org/10.1016/j.foar.2018.12.002M M Muñoz, B L Bodensteiner Janzen's Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution, Integrative Organismal Biology 1, no.11 (Jan 2019).https://doi.org/10.1093/iob/oby002John G. Alford, William I. Lutterschmidt From conceptual to computational: Cost and benefits of lizard thermoregulation revisited, Journal of Thermal Biology 78 (Dec 2018): 174–183.https://doi.org/10.1016/j.jtherbio.2018.09.015Rafael Bovo, Carlos Navas, Miguel Tejedo, Saulo Valença, Sidney Gouveia Ecophysiology of Amphibians: Information for Best Mechanistic Models, Diversity 10, no.44 (Oct 2018): 118.https://doi.org/10.3390/d10040118Raymond B. Huey, Eric R. Pianka, Brent Sinclair Body temperature distributions of active diurnal lizards in three deserts: Skewed up or skewed down?, Functional Ecology 32, no.22 (Sep 2017): 334–344.https://doi.org/10.1111/1365-2435.12966Jennifer M. Singleton and Theodore Garland Jr. Among-Individual Variation in Desert Iguanas (Squamata: Dipsosaurus dorsalis): Endurance Capacity Is Positively Related to Home Range Size, Physiological and Biochemical Zoology 91, no.11 (Dec 2017): 725–730.https://doi.org/10.1086/695692Luisa M. Diele-Viegas, Laurie J. Vitt, Barry Sinervo, Guarino R. Colli, Fernanda P. Werneck, Donald B. Miles, William E. Magnusson, Juan C. Santos, Carla M. Sette, Gabriel H. O. Caetano, Emerson Pontes, Teresa C. S. Ávila-Pires, Michael Sears , PLOS ONE 13, no.33 ( 2018): e0192834.https://doi.org/10.1371/journal.pone.0192834Sebastian Kirchhof, Robyn S. Hetem, Hilary M. Lease, Donald B. Miles, Duncan Mitchell, Johannes Müller, Mark‐Oliver Rödel, Barry Sinervo, Theo Wassenaar, Ian W. Murray Thermoregulatory behavior and high thermal preference buffer impact of climate change in a Namib Desert lizard, Ecosphere 8, no.1212 (Dec 2017).https://doi.org/10.1002/ecs2.2033Ian R.G. Black, Glenn J. Tattersall Thermoregulatory behavior and orientation preference in bearded dragons, Journal of Thermal Biology 69 (Oct 2017): 171–177.https://doi.org/10.1016/j.jtherbio.2017.07.009Agustín Camacho, Travis W. Rusch Methods and pitfalls of measuring thermal preference and tolerance in lizards, Journal of Thermal Biology 68 (Aug 2017): 63–72.https://doi.org/10.1016/j.jtherbio.2017.03.010Nadia Vicenzi, Valeria Corbalán, Donald Miles, Barry Sinervo, Nora Ibargüengoytía Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma, Biological Conservation 206 (Feb 2017): 151–160.https://doi.org/10.1016/j.biocon.2016.12.030William Ruger Porter, Lawrence M. Witmer, Izumi Sugihara Vascular Patterns in Iguanas and Other Squamates: Blood Vessels and Sites of Thermal Exchange, PLOS ONE 10, no.1010 (Oct 2015): e0139215.https://doi.org/10.1371/journal.pone.0139215Alex R. Gunderson, Manuel Leal, Patterns of Thermal Constraint on Ectotherm Activity, The American Naturalist 185, no.55 (Oct 2015): 653–664.https://doi.org/10.1086/680849Susana Clusella-Trullas, Steven L. Chown Lizard thermal trait variation at multiple scales: a review, Journal of Comparative Physiology B 184, no.11 (Aug 2013): 5–21.https://doi.org/10.1007/s00360-013-0776-xRichard G. Bowker, George E. Bowker, Chadwick L. Wright Thermoregulatory movement patterns of the lizard Podarcis carbonelli (Lacertilia: Lacertidae), Journal of Thermal Biology 38, no.77 (Oct 2013): 454–457.https://doi.org/10.1016/j.jtherbio.2013.07.002Matthew L. Brien, Grahame J. Webb, Christopher M. Gienger, Jeffrey W. Lang, Keith A. Christian Thermal preferences of hatchling saltwater crocodiles (Crocodylus porosus) in response to time of day, social aggregation and feeding, Journal of Thermal Biology 37, no.88 (Dec 2012): 625–630.https://doi.org/10.1016/j.jtherbio.2012.08.003ROBIN M. ANDREWS, LIN SCHWARZKOPF Thermal performance of squamate embryos with respect to climate, adult life history, and phylogeny, Biological Journal of the Linnean Society 106, no.44 (Apr 2012): 851–864.https://doi.org/10.1111/j.1095-8312.2012.01901.xGlenn J. Tattersall, Brent J. Sinclair, Philip C. Withers, Peter A. Fields, Frank Seebacher, Christine E. Cooper, Shane K. Maloney Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures, (Jul 2012): 2151–2202.https://doi.org/10.1002/cphy.c110055Lin Schwarzkopf, Robin M. Andrews Are Moms Manipulative Or Just Selfish? Evaluating the "Maternal Manipulation Hypothesis" and Implications For Life-History Studies of Reptiles, Herpetologica 68, no.22 (Jun 2012): 147–159.https://doi.org/10.1655/HERPETOLOGICA-D-11-00009.1 Mathew Vickers , Carryn Manicom , and Lin Schwarzkopf Extending the Cost-Benefit Model of Thermoregulation: High-Temperature Environments., The American Naturalist 177, no.44 (Jul 2015): 452–461.https://doi.org/10.1086/658150Chloé D. CADBY, Geoffrey M. WHILE, Alistair J. HOBDAY, Tobias ULLER, Erik WAPSTRA Multi-scale approach to understanding climate effects on offspring size at birth and date of birth in a reptile, Integrative Zoology 5, no.22 (Jun 2010): 164–175.https://doi.org/10.1111/j.1749-4877.2010.00201.xJameel J. Khan, Jean M.L. Richardson, Glenn J. Tattersall Thermoregulation and aggregation in neonatal bearded dragons (Pogona vitticeps), Physiology & Behavior 100, no.22 (May 2010): 180–186.https://doi.org/10.1016/j.physbeh.2010.02.019Richard G. Bowker, Chadwick L. Wright, George E. Bowker Patterns of body temperatures: Is lizard thermoregulation chaotic?, Journal of Thermal Biology 35, no.11 (Jan 2010): 1–5.https://doi.org/10.1016/j.jtherbio.2009.09.004Henry J. Harlow, Deni Purwandana, Tim S. Jessop, John A. Phillips Size-Related Differences in the Thermoregulatory Habits of Free-Ranging Komodo Dragons, International Journal of Zoology 2010 (Jan 2010): 1–9.https://doi.org/10.1155/2010/921371Viviana Cadena and Glenn J. Tattersall The Effect of Thermal Quality on the Thermoregulatory Behavior of the Bearded Dragon Pogona vitticeps: Influences of Methodological Assessment V. Cadena and G. J. Tattersall, Physiological and Biochemical Zoology 82, no.33 (Jul 2015): 203–217.https://doi.org/10.1086/597483V. Cadena, G. J. Tattersall Decreased precision contributes to the hypoxic thermoregulatory response in lizards, Journal of Experimental Biology 212, no.11 (Dec 2008): 137–144.https://doi.org/10.1242/jeb.023531 Tara Laine Martin and Raymond B. Huey Why "Suboptimal" Is Optimal: Jensen's Inequality and Ectotherm Thermal Preferences. T. L. Martin and R. B. Huey, The American Naturalist 171, no.33 (Jul 2015): E102–E118.https://doi.org/10.1086/527502 Thomas V. Hancock and Todd T. Gleeson Contributions to Elevated Metabolism during Recovery: Dissecting the Excess Postexercise Oxygen Consumption (EPOC) in the Desert Iguana (Dipsosaurus dorsalis) T. V. Hancock and T. T. Gleeson, Physiological and Biochemical Zoology 81, no.11 (Jul 2015): 1–13.https://doi.org/10.1086/523857Glenn J. Tattersall, Viviana Cadena, Matthew C. Skinner Respiratory cooling and thermoregulatory coupling in reptiles, Respiratory Physiology & Neurobiology 154, no.1-21-2 (Nov 2006): 302–318.https://doi.org/10.1016/j.resp.2006.02.011 Thomas V. Hancock and Todd T. Gleeson Intermittent Locomotor Activity That Increases Endurance Also Increases Metabolic Costs in the Desert Iguana (Dipsosaurus dorsalis) T. V. Hancock and T. T. Gleeson, Physiological and Biochemical Zoology 78, no.22 (Jul 2015): 163–172.https://doi.org/10.1086/427047C. Richard Tracy, Kevin M. Flack, Linda C. Zimmerman, Robert E. Espinoza, Christopher R. Tracy, S. J. Beaupre Herbivory Imposes Constraints on Voluntary Hypothermia in Lizards, Copeia 2005, no.11 (Feb 2005): 12–19.https://doi.org/10.1643/CP-03-181R2Dale F. DeNardo, Tricia E. Zubal, Ty C.M. Hoffman Cloacal evaporative cooling: a previously undescribed means of increasing evaporative water loss at higher temperatures in a desert ectotherm, the Gila monster Heloderma suspectum, Journal of Experimental Biology 207, no.66 (Feb 2004): 945–953.https://doi.org/10.1242/jeb.00861Brian W. Witz Aspects of the thermal biology of the six-lined racerunner, Cnemidophorus sexlineatus (Squamata:Teiidae) in West-Central Florida, Journal of Thermal Biology 26, no.66 (Nov 2001): 529–535.https://doi.org/10.1016/S0306-4565(00)00020-6 Eric T. Simandle , Robert E. Espinoza , Kenneth E. Nussear , and C. Richard Tracy Lizards, Lipids, and Dietary Links to Animal Function E. T. Simandle, R. E. Espinoza, K. E. Nussear, and C. R. Tracy, Physiological and Biochemical Zoology 74, no.55 (Jul 2015): 625–640.https://doi.org/10.1086/322923Thomas V. Hancock, Stephen C. Adolph, Todd T. Gleeson Effect of activity duration on recovery and metabolic costs in the desert iguana (Dipsosaurus dorsalis), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 130, no.11 (Aug 2001): 67–79.https://doi.org/10.1016/S1095-6433(01)00365-8Bruce A. Kingsbury An Experimental Design for Examining Thermoregulatory Set Points in Ectothermic Animals, The American Biology Teacher 61, no.66 (Jun 1999): 448–452.https://doi.org/10.2307/4450727David A. Scholnick, Randi B. Weinstein, Todd T. Gleeson The Influence of Corticosterone and Glucagon on Metabolic Recovery from Exhaustive Exercise in the Desert IguanaDipsosaurus dorsalis, General and Comparative Endocrinology 106, no.22 (May 1997): 147–154.https://doi.org/10.1006/gcen.1996.6866Wouter D. van Marken Lichtenbelt, Jacob T. Vogel, Renate A. Wesselingh ENERGETIC CONSEQUENCES OF FIELD BODY TEMPERATURES IN THE GREEN IGUANA, Ecology 78, no.11 (Jan 1997): 297–307.https://doi.org/10.1890/0012-9658(1997)078[0297:ECOFBT]2.0.CO;2Harvey B. Lillywhite, Robert E. Gatten Physiology and functional anatomy, (Jan 1995): 5–31.https://doi.org/10.1007/978-94-011-1222-2_2James C. Gillingham Normal behaviour, (Jan 1995): 131–164.https://doi.org/10.1007/978-94-011-1222-2_7 Paul E. Hertz , Raymond B. Huey , and R. D. Stevenson Evaluating Temperature Regulation by Field-Active Ectotherms: The Fallacy of the Inappropriate Question, The American Naturalist 142, no.55 (Oct 2015): 796–818.https://doi.org/10.1086/285573Thomas A. Wehr A brain-warming function for REM sleep, Neuroscience & Biobehavioral Reviews 16, no.33 (Sep 1992): 379–397.https://doi.org/10.1016/S0149-7634(05)80208-8Todd T. Gleeson, Paula M. Dalessio Lactate: a substrate for reptilian muscle gluconeogenesis following exhaustive exercise, Journal of Comparative Physiology B 160, no.33 (Aug 1990): 331–338.https://doi.org/10.1007/BF00302600M.J. McFall-Ngai, J. Horwitz A comparative study of the thermal stability of the vertebrate eye lens: Antarctic ice fish to the desert iguana, Experimental Eye Research 50, no.66 (Jun 1990): 703–709.https://doi.org/10.1016/0014-4835(90)90117-DLynnette M. Sievert, Victor H. Hutchison Influences of season, time of day, light and sex on the thermoregulatory behaviour of crotaphytus collaris, Journal of Thermal Biology 14, no.33 (Jul 1989): 159–165.https://doi.org/10.1016/0306-4565(89)90039-9S.D. Bradshaw Desert reptiles: A case of adaptation or pre-adaptation?, Journal of Arid Environments 14, no.22 (Mar 1988): 155–174.https://doi.org/10.1016/S0140-1963(18)31085-1P. D. Rismiller, G. Heldmaier How photoperiod influences body temperature selection in Lacerta viridis, Oecologia 75, no.11 (Feb 1988): 125–131.https://doi.org/10.1007/BF00378825Y Zurovsky, T Brain, H Laburn, D Mitchell Pyrogens fail to produce fever in the snakes Psammophis phillipsii and Lamprophis fuliginosus, Comparative Biochemistry and Physiology Part A: Physiology 87, no.44 (Jan 1987): 911–914.https://doi.org/10.1016/0300-9629(87)90014-4Y Zurovsky, D Mitchell, H Laburn Pyrogens fail to produce fever in the leopard tortoise Geochelone pardalis, Comparative Biochemistry and Physiology Part A: Physiology 87, no.22 (Jan 1987): 467–469.https://doi.org/10.1016/0300-9629(87)90152-6Raoul Van Damme, Dirk Bauwens, Rudolf F. Verheyen Selected body temperatures in the lizard Lacerta vivipara: Variation within and between populations, Journal of Thermal Biology 11, no.44 (Dec 1986): 219–222.https://doi.org/10.1016/0306-4565(86)90006-9Chris Thoen, Dirk Bauwens, Rudolf F. Verheyen Chemoreceptive and behavioural responses of the common lizard Lacerta vivipara to snake chemical deposits, Animal Behaviour 34, no.66 (Dec 1986): 1805–1813.https://doi.org/10.1016/S0003-3472(86)80266-4Wilma George The thermal niche: desert sand and desert rock, Journal of Arid Environments 10, no.33 (May 1986): 213–224.https://doi.org/10.1016/S0140-1963(18)31241-2R. Keith Dupré, Eugene C. Crawford Control of panting in the desert iguana: Roles for peripheral temperatures and the effect of dehydration, Journal of Experimental Zoology 235, no.33 (Sep 1985): 341–347.https://doi.org/10.1002/jez.1402350305Richard L. Marsh, Albert F. Bennett Thermal dependence of isotonic contractile properties of skeletal muscle and sprint performance of the lizardDipsosaurus dorsalis, Journal of Comparative Physiology B 155, no.55 (Jul 1985): 541–551.https://doi.org/10.1007/BF00694443 Philip C. Withers , and James D. Campbell Effects of Environmental Cost on Thermoregulation in the Desert Iguana, Physiological Zoology 58, no.33 (Sep 2015): 329–339.https://doi.org/10.1086/physzool.58.3.30156004J.G. Cannon, M.J. Kluger Altered thermoregulation in the iguana disposaurus dorsalis following exercise, Journal of Thermal Biology 10, no.11 (Feb 1985): 41–45.https://doi.org/10.1016/0306-4565(85)90009-9Philip E. Bickler Effects of temperature on acid and base excretion in a lizard,Dipsosaurus dorsalis, Journal of Comparative Physiology B 154, no.11 (Jan 1984): 97–104.https://doi.org/10.1007/BF00683222Henry B. John-Alder Seasonal variations in activity, aerobic energetic capacities, and plasma thyroid hormones (T3 and T4) in an iguanid lizard, Journal of Comparative Physiology B 154, no.44 (Jan 1984): 409–419.https://doi.org/10.1007/BF00684448Michel Cabanac THERMOREGULATORY BEHAVIORAL RESPONSES, (Jan 1983): 307–357.https://doi.org/10.1016/B978-0-12-044020-7.50022-2Gary M. Kiebzak, John E. Minnich Effects of calcitonin on electrolyte excretion in the lizard Dipsosaurus dorsalis, General and Comparative Endocrinology 48, no.22 (Oct 1982): 232–238.https://doi.org/10.1016/0016-6480(82)90021-1Robert Kaufmann, F.Harvey Pough The effect of temperature upon the efficiency of assimilation of preformed water by the desert iguana (Dipsosaurus dorsalis), Comparative Biochemistry and Physiology Part A: Physiology 72, no.11 (Jan 1982): 221–224.https://doi.org/10.1016/0300-9629(82)90036-6Todd T. Gleeson, Robert W. Putnam, Albert F. Bennett Histochemical, enzymatic, and contractile properties of skeletal muscle fibers in the lizardDipsosaurus dorsalis, Journal of Experimental Zoology 214, no.33 (Dec 1980): 293–302.https://doi.org/10.1002/jez.1402140307Albert F. Bennett The thermal dependence of lizard behaviour, Animal Behaviour 28, no.33 (Aug 1980): 752–762.https://doi.org/10.1016/S0003-3472(80)80135-7 Richard G. Bowker , and Oliver W. Johnson Thermoregulatory Precision in Three Species of Whiptail Lizards (Lacertilia: Teiidae), Physiological Zoology 53, no.22 (Sep 2015): 176–185.https://doi.org/10.1086/physzool.53.2.30152581Arthur Georges Head-body temperature differences in the Australian blue-tongued lizard, Tiliqua scincoides during radiant heating, Journal of Thermal Biology 4, no.33 (Jul 1979): 213–217.https://doi.org/10.1016/0306-4565(79)90004-4 Billy J. Barber , and Eugene C. Crawford Jr. Dual Threshold Control of Peripheral Temperature in the Lizard Dipsosaurus dorsalis, Physiological Zoology 52, no.22 (Sep 2015): 250–263.https://doi.org/10.1086/physzool.52.2.30152568Marian L Cothran, Victor H Hutchison Effect of melatonin on thermal selection by Crotaphytus collaris (Squamata: Iguanidae), Comparative Biochemistry and Physiology Part A: Physiology 63, no.44 (Jan 1979): 461–466.https://doi.org/10.1016/0300-9629(79)90172-5HAROLD HEATWOLE, CLIFFORD RAY JOHNSON Thermoregulation in the Red-bellied Blacksnake, Pseudechis porphyriacus (Elapidae), Zoological Journal of the Linnean Society 65, no.11 (Jun 2008): 83–101.https://doi.org/10.1111/j.1096-3642.1979.tb01082.xJ.W. Patterson, P.M.C. Davies Preferred body temperature: Seasonal and sexual differences in the lizard Lacerta vivipara, Journal of Thermal Biology 3, no.11 (Mar 1978): 39–41.https://doi.org/10.1016/0306-4565(78)90034-7Cynthia Carey Factors affecting body temperatures of toads, Oecologia 35, no.22 (Jan 1978): 197–219.https://doi.org/10.1007/BF00344732Robert E Gatten Aerobic metabolism in snapping turtles, Chelydra serpentina, after thermal acclimation, Comparative Biochemistry and Physiology Part A: Physiology 61, no.22 (Jan 1978): 325–337.https://doi.org/10.1016/0300-9629(78)90116-0 Bernd Heinrich Why Have Some Animals Evolved to Regulate a High Body Temperature?, The American Naturalist 111, no.980980 (Oct 2015): 623–640.https://doi.org/10.1086/283196 Billy J. Barber , and Eugene C. Crawford, Jr. A Stochastic Dual-Limit Hypothesis for Behavioral Thermoregulation in Lizards, Physiological Zoology 50, no.11 (Sep 2015): 53–60.https://doi.org/10.1086/physzool.50.1.30155715Eugene C. Crawford, Jesus Palomeque, Billy J. Barber A physiological basis for head-body temperature differences in a panting lizard, Comparative Biochemistry and Physiology Part A: Physiology 56, no.22 (Jan 1977): 161–163.https://doi.org/10.1016/0300-9629(77)90178-5William W. Reynolds Thermal equilibration rates in relation to heartbeat and ventilatory frequencies in largemouth blackbass, Micropterus salmoides, Comparative Biochemistry and Physiology Part A: Physiology 56, no.22 (Jan 1977): 195–201.https://doi.org/10.1016/0300-9629(77)90184-0Gustav A. Engbretson, Victor H. Hutchison Parietalectomy and thermal selection in the lizardSceloporus magister, Journal of Experimental Zoology 198, no.11 (Oct 1976): 29–38.https://doi.org/10.1002/jez.1401980105Evelyn Satinoff, G. N. McEwen, B. A. Williams Behavioral Fever in Newborn Rabbits, Science 193, no.42584258 (Sep 1976): 1139–1140.https://doi.org/10.1126/science.959829F. Harvey Pough, William N. McFarland A physical basis for head-body temperature differences in reptiles, Comparative Biochemistry and Physiology Part A: Physiology 53, no.33 (Jan 1976): 301–303.https://doi.org/10.1016/S0300-9629(76)80040-0Mitchell L. Berk, James Edward Heath An analysis of behavioral thermoregulation in the lizard, Dipsosaurus dorsalis, Journal of Thermal Biology 1, no.11 (Oct 1975): 15–22.https://doi.org/10.1016/0306-4565(75)90006-6CLIFFORD RAY JOHNSON Thermoregulation in the Papuan-New Guinean boid and colubrid snakes, Candoia carinata, Candoia aspera and Boiga irregularis, Zoological Journal of the Linnean Society 56, no.44 (Jun 2008): 283–290.https://doi.org/10.1111/j.1096-3642.1975.tb00270.xMatthew J. Kluger, Daniel H. Ringler, Miriam R. Anver Fever and Survival, Science 188, no.41844184 (Apr 1975): 166–168.https://doi.org/10.1126/science.188.4184.166C. Richard Tracy Water and Energy Relations of Terrestrial Amphibians: Insights from Mechanistic Modeling, (Jan 1975): 325–346.https://doi.org/10.1007/978-3-642-87810-7_19Warren P. Porter, John W. Mitchell, William A. Beckman, C. Richard Tracy Environmental Constraints on Some Predator—Prey Interactions, (Jan 1975): 347–364.https://doi.org/10.1007/978-3-642-87810-7_20William R. Dawson On the Physiological Significance of the Preferred Body Temperatures of Reptiles, (Jan 1975): 443–473.https://doi.org/10.1007/978-3-642-87810-7_25Gloria V. Callard, Stephen W. C. Chan, Ian P. Callard Temperature effects on ACTH-stimulated adrenocortical secretion and carbohydrate metabolism in the lizard (Dipsosaurus dorsalis), Journal of Comparative Physiology ? B 99, no.44 (Jan 1975): 271–277.https://doi.org/10.1007/BF00710367Martin E. Feder, F. Harvey Pough Temperature selection by the red-backed salamander, Plethodon C. cinereus (Green) (Caudata: Plethodontidae), Comparative Biochemistry and Physiology Part A: Physiology 50, no.11 (Jan 1975): 91–98.https://doi.org/10.1016/S0010-406X(75)80207-6CLIFFORD RAY JOHNSON Head-body thermal control, thermal preferenda, and voluntary maxima in the taipan, Oxyuranus scutellatus (Serpentes: Elapidae), Zoological Journal of the Linnean Society 56, no.11 (Jun 2008): 1–12.https://doi.org/10.1111/j.1096-3642.1975.tb00807.xLINDA K. VAUGHN, HARRY A. BERNHEIM, MATTHEW J. KLUGER Fever in the lizard Dipsosaurus dorsalis, Nature 252, no.54835483 (Dec 1974): 473–474.https://doi.org/10.1038/252473a0Clifford Ray Johnson Thermoregulation in crocodilians—I. Head-body temperature control in the papuan-new guinean crocodiles, Crocodylus novaeguineae and Crocodylus porosus, Comparative Biochemistry and Physiology Part A: Physiology 49, no.11 (Sep 1974): 3–28.https://doi.org/10.1016/0300-9629(74)90538-6R. B. Huey Behavioral Thermoregulation in Lizards: Importance of Associated Costs, Science 184, no.41404140 (May 1974): 1001–1003.https://doi.org/10.1126/science.184.4140.1001Leslie D. Garrick Reproductive influences on behavioral thermoregulation in the lizard, Sceloporus cyanogenys, Physiology & Behavior 12, no.11 (Jan 1974): 85–91.https://doi.org/10.1016/0031-9384(74)90072-9Harold Heatwole, Bruce T Firth, Grahame J.W Webb Panting thresholds of lizards—I. Some methodological and internal influences on the panting threshold of an agamid, Amphibolurus muricatus, Comparative Biochemistry and Physiology Part A: Physiology 46, no.44 (Dec 1973): 799–826.https://doi.org/10.1016/0300-9629(73)90130-8Clifford Ray Johnson Thermoregulation in pythons—II. Head-body temperature differences and thermal preferenda in australian pythons, Comparative Biochemistry and Physiology Part A: Physiology 45, no.44 (Aug 1973): 1065–1087.https://doi.org/10.1016/0300-9629(73)90343-5Paul Licht Environmental influences on the testis cycles of the lizards Dipsosaurus dorsalis and Xantusia vigilis, Comparative Biochemistry and Physiology Part A: Physiology 45, no.11 (May 1973): 7–20.https://doi.org/10.1016/0300-9629(73)90003-0 Matthew J. Kluger , Robert S. Tarr , and James E. Heath Posterior Hypothalamic Lesions and Disturbances in Behavioral Thermoregulation in the Lizard Dipsosaurus dorsalis, Physiological Zoology 46, no.11 (Sep 2015): 79–84.https://doi.org/10.1086/physzool.46.1.30152519W. P. Porter, J. W. Mitchell, W. A. Beckman, C. B. DeWitt Behavioral implications of mechanistic ecology, Oecologia 13, no.11 (Jan 1973): 1–54.https://doi.org/10.1007/BF00379617Clifford Ray Johnson Head-body temperature differences in Varanusgouldii (Sauria: Varanidae), Comparative Biochemistry and Physiology Part A: Physiology 43, no.44 (Dec 1972): 1025–1029.https://doi.org/10.1016/0300-9629(72)90174-0S.D. Bradshaw, V.H. Shoemaker, K.A. Nagy The role of adrenal corticosteroids in the regulation of kidney function in the desert lizard Dipsosaurus dorsalis, Comparative Biochemistry and Physiology Part A: Physiology 43, no.33 (Nov 1972): 621–635.https://doi.org/10.1016/0300-9629(72)90248-4Eugene C. Crawford Brain and Body Temperatures in a Panting Lizard, Science 177, no.40474047 (Aug 1972): 431–433.https://doi.org/10.1126/science.177.4047.431V.H. Shoemaker, K.A. Nagy, S.D. Bradshaw Studies on the control of electrolyte excretion by the nasal gland of the lizard Dipsosaurus dorsalis, Comparative Biochemistry and Physiology Part A: Physiology 42, no.33 (Jul 1972): 749–757.https://doi.org/10.1016/0300-9629(72)90452-5 G. J. W. Webb , C. R. Johnson , and B. T. Firth Head-Body Temperature Differences in Lizards, Physiological Zoology 45, no.22 (Sep 2015): 130–142.https://doi.org/10.1086/physzool.45.2.30155577Ian F. Spellerberg Temperature tolerances of Southeast Australian reptiles examined in relation to reptile thermoregulatory behaviour and distribution, Oecologia 9, no.11 (Jan 1972): 23–46.https://doi.org/10.1007/BF00345241Ian F. Spellerberg Thermal ecology of allopatric lizards (Sphenomorphus) in southeast Australia, Oecologia 9, no.44 (Jan 1972): 385–398.https://doi.org/10.1007/BF00345341Albert F. Bennett, William R. Dawson Aerobic and anaerobic metabolism during activity in the lizardDipsosaurus dorsalis, Journal of Comparative Physiology 81, no.33 (Jan 1972): 289–299.https://doi.org/10.1007/BF00693633David E. Murrish, Knut Schmidt-Nielsen Water Transport in the Cloaca of Lizards: Active or Passive?, Science 170, no.39553955 (Oct 1970): 324–326.https://doi.org/10.1126/science.170.3955.324David E. Murrish, Knut Schmidt-Nielsen Exhaled air temperature and water conservation in lizards, Respiration Physiology 10, no.22 (Sep 1970): 151–158.https://doi.org/10.1016/0034-5687(70)90079-4S. A. RICHARDS THE BIOLOGY AND COMPARATIVE PHYSIOLOGY OF THERMAL PANTING, Biological Reviews 45, no.22 (May 1970): 223–261.https://doi.org/10.1111/j.1469-185X.1970.tb01631.xFrederick D. Kemp Thermal reinforcement and thermoregulatory behaviour in the lizard Dipsosaurus dorsalis: An operant technique, Animal Behaviour 17 (Aug 1969): 446–451.https://doi.org/10.1016/0003-3472(69)90145-6 Howard W. Campbell The Effects of Temperature on the Auditory Sensitivity of Lizards, Physiological Zoology 42, no.22 (Sep 2015): 183–210.https://doi.org/10.1086/physzool.42.2.30158472Wilbur W. Mayhew BIOLOGY OF DESERT AMPHIBIANS AND REPTILES, (Jan 1968): 195–356.https://doi.org/10.1016/B978-1-4831-9868-2.50014-1Calvin B. DeWitt Behavioral Thermoregulation in the Desert Iguana, Science 158, no.38023802 (Nov 1967): 809–810.https://doi.org/10.1126/science.158.3802.809
Referência(s)