Artigo Acesso aberto

The Effect of Alternating Temperatures on the Pupal Development of Drosophila melanogaster Meigen

1933; University of Chicago Press; Volume: 6; Issue: 4 Linguagem: Inglês

10.1086/physzool.6.4.30151203

ISSN

1937-4267

Autores

Daniel Ludwig, R. M. Cable,

Tópico(s)

Physiological and biochemical adaptations

Resumo

Previous articleNext article No AccessThe Effect of Alternating Temperatures on the Pupal Development of Drosophila melanogaster MeigenDaniel Ludwig and Raymond M. CableDaniel Ludwig Search for more articles by this author and Raymond M. Cable Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 6, Number 4Oct., 1933 Article DOIhttps://doi.org/10.1086/physzool.6.4.30151203 Views: 14Total views on this site Citations: 27Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). PDF download Crossref reports the following articles citing this article:Bénédicte M. Lefèvre, Stecy Mienanzambi, Michael Lang Developmental timing of Drosophila pachea pupae is robust to temperature changes, Journal of Thermal Biology 106 (May 2022): 103232.https://doi.org/10.1016/j.jtherbio.2022.103232V. V. Agasoi On the Specific Features of Pupal Development of Horseflies (Diptera, Tabanidae) in Northwestern Russia, Entomological Review 101, no.99 (Mar 2022): 1258–1265.https://doi.org/10.1134/S0013873821090037Loke Schmalensee, Katrín Hulda Gunnarsdóttir, Joacim Näslund, Karl Gotthard, Philipp Lehmann, Cameron Ghalambor Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates, Ecology Letters 24, no.88 (May 2021): 1633–1645.https://doi.org/10.1111/ele.13779Christen K. Mirth, Timothy E. Saunders, Christopher Amourda Growing Up in a Changing World: Environmental Regulation of Development in Insects, Annual Review of Entomology 66, no.11 (Aug 2020).https://doi.org/10.1146/annurev-ento-041620-083838Takaya Ikemoto, Keizi Kiritani Novel Method of Specifying Low and High Threshold Temperatures Using Thermodynamic SSI Model of Insect Development, Environmental Entomology 48, no.33 (Apr 2019): 479–488.https://doi.org/10.1093/ee/nvz031Hélène Hinaux, Katharina Bachem, Margherita Battistara, Matteo Rossi, Yaqun Xin, Rita Jaenichen, Yann Le Poul, Laurent Arnoult, Johanna M. Kobler, Ilona C. Grunwald Kadow, Lisa Rodermund, Benjamin Prud’homme, Nicolas Gompel Revisiting the developmental and cellular role of the pigmentation gene yellow in Drosophila using a tagged allele, Developmental Biology 438, no.22 (Jun 2018): 111–123.https://doi.org/10.1016/j.ydbio.2018.04.003Takaya Ikemoto, Chikahiro Egami Mathematical elucidation of the Kaufmann effect based on the thermodynamic SSI model, Applied Entomology and Zoology 48, no.33 (May 2013): 313–323.https://doi.org/10.1007/s13355-013-0190-6Jennifer F. Hackney, Omid Zolali-Meybodi, Peter Cherbas, Andreas Bergmann Tissue Damage Disrupts Developmental Progression and Ecdysteroid Biosynthesis in Drosophila, PLoS ONE 7, no.1111 (Nov 2012): e49105.https://doi.org/10.1371/journal.pone.0049105 10.1007/BF00368866, CrossRef Listing of Deleted DOIs 20 (Jan 2011).https://doi.org/10.1007/BF00368866G. Reji, S. Chander A degree-day simulation model for the population dynamics of the rice bug, Leptocorisa acuta (Thunb.), Journal of Applied Entomology 132, no.88 (Sep 2008): 646–653.https://doi.org/10.1111/j.1439-0418.2007.01178.xStephan J. Sigrist, Dierk F. Reiff, Philippe R. Thiel, Joern R. Steinert, Christoph M. Schuster Experience-Dependent Strengthening of Drosophila Neuromuscular Junctions, The Journal of Neuroscience 23, no.1616 (Jul 2003): 6546–6556.https://doi.org/10.1523/JNEUROSCI.23-16-06546.2003G. Petavy, J.R. David, P. Gibert, B. Moreteau Viability and rate of development at different temperatures in Drosophila: a comparison of constant and alternating thermal regimes, Journal of Thermal Biology 26, no.11 (Feb 2001): 29–39.https://doi.org/10.1016/S0306-4565(00)00022-XX-M. XU The effects of constant and fluctuating temperatures on the length of the incubation period of apple powdery mildew (Podosphaera leucotricha), Plant Pathology 45, no.55 (Oct 1996): 924–932.https://doi.org/10.1111/j.1365-3059.1996.tb02903.xS. Paul Bainbridge, Mary Bownes Ecdysteroid titers during Drosophila metamorphosis, Insect Biochemistry 18, no.22 (Jan 1988): 185–197.https://doi.org/10.1016/0020-1790(88)90023-6Hermann Bultmann Heat shock responses in polytene foot pad cells of Sarcophaga bullata, Chromosoma 93, no.44 (Mar 1986): 347–357.https://doi.org/10.1007/BF00327594Robert Keen, David L. Parker Determining expected duration of development under conditions of alternating temperatures, Journal of Theoretical Biology 81, no.33 (Dec 1979): 599–607.https://doi.org/10.1016/0022-5193(79)90057-2T. Solhøy, A. Skartveit Influence of Various Temperature Approximations on Estimates of Field Respiration in a Mountain Community, (Jan 1975): 111–116.https://doi.org/10.1007/978-3-642-66276-8_15D. Neumann, F. Heimbach Das Wachstum des Kohlwei�lings bei konstanten und tagesperiodisch wechselnden temperaturen, Oecologia 20, no.22 (Jan 1975): 135–141.https://doi.org/10.1007/BF00369026Hermann Remmert, Klaus W�nderling Temperature differences between arctic and alpine meadows and their ecological significance, Oecologia 4, no.22 (Jan 1970): 208–210.https://doi.org/10.1007/BF00377101W. P. STEPHEN TEMPERATURE EFFECTS ON THE DEVELOPMENT AND MULTIPLE GENERATIONS IN THE ALKALI BEE, NOMIA MELANDERI COCKERELL1, Entomologia Experimentalis et Applicata 8, no.33 (Apr 2011): 228–240.https://doi.org/10.1111/j.1570-7458.1965.tb00856.xD. S. Saunders Laboratory studies on the biology of Syntomosphyrum albiclavus Kerrich (Hym., Eulophidae), a parasite of tsetse flies, Bulletin of Entomological Research 52, no.0202 (Jul 2009): 413.https://doi.org/10.1017/S0007485300055486 Sping Lin , Alexander C. Hodson , and A. Glenn Richards An Analysis of Threshold Temperatures for the Development of Oncopeltus and Tribolium Eggs, Physiological Zoology 27, no.44 (Sep 2015): 287–311.https://doi.org/10.1086/physzool.27.4.30152364Francis Joseph Ryan Temperature change and the subsequent rate of development, Journal of Experimental Zoology 88, no.11 (Oct 1941): 25–54.https://doi.org/10.1002/jez.1400880104C. G. Johnson Development, hatching and mortality of the eggs of Cimex lectularius L. (Hemiptera) in relation to climate, with observations on the effects of preconditioning to temperature, Parasitology 32, no.22 (Apr 2009): 127–173.https://doi.org/10.1017/S0031182000015675 John A. Moore Stenothermy and Eurythermy of Animals in Relation to Habitat, The American Naturalist 74, no.751751 (Oct 2015): 188–192.https://doi.org/10.1086/280886J. William Buchanan Developmental rate and alternating temperatures, Journal of Experimental Zoology 83, no.22 (Mar 1940): 235–248.https://doi.org/10.1002/jez.1400830205 Louis Powsner The Effects of Temperature on the Durations of the Developmental Stages of Drosophila melanogaster, Physiological Zoology 8, no.44 (Sep 2015): 474–520.https://doi.org/10.1086/physzool.8.4.30151263

Referência(s)