Temperature Regulation and Torpidity in the Pygmy Mouse, Baiomys taylori

1965; University of Chicago Press; Volume: 38; Issue: 3 Linguagem: Inglês

10.1086/physzool.38.3.30152836

ISSN

1937-4267

Autores

Jack W. Hudson,

Tópico(s)

Animal Ecology and Behavior Studies

Resumo

Previous articleNext article No AccessTemperature Regulation and Torpidity in the Pygmy Mouse, Baiomys tayloriJack W. HudsonJack W. HudsonPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 38, Number 3Jul., 1965 Article DOIhttps://doi.org/10.1086/physzool.38.3.30152836 Views: 12Total views on this site Citations: 71Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1965 University of ChicagoPDF download Crossref reports the following articles citing this article:Richard W. Ramirez, Eric A. Riddell, Steven R. Beissinger, Blair O. Wolf Keeping your cool: thermoregulatory performance and plasticity in desert cricetid rodents, Journal of Experimental Biology 225, no.55 (Mar 2022).https://doi.org/10.1242/jeb.243131Yunsong Mu, Meichen Shao, Buqing Zhong, Yiqun Zhao, Kenneth M. Y. Leung, John P. Giesy, Jin Ma, Fengchang Wu, Fangang Zeng Transmission of SARS-CoV-2 virus and ambient temperature: a critical review, Environmental Science and Pollution Research 28, no.2828 (May 2021): 37051–37059.https://doi.org/10.1007/s11356-021-14625-8Fritz Geiser Diversity and Geography of Torpor and Heterothermy, (Aug 2021): 31–92.https://doi.org/10.1007/978-3-030-75525-6_3Roberto Refinetti Circadian rhythmicity of body temperature and metabolism, Temperature 7, no.44 (Apr 2020): 321–362.https://doi.org/10.1080/23328940.2020.1743605Catherine G. Haase, Nathan W. Fuller, C. Reed Hranac, David T.S. Hayman, Sarah H. Olson, Raina K. Plowright, Liam P. McGuire Bats are not squirrels: Revisiting the cost of cooling in hibernating mammals, Journal of Thermal Biology 81 (Apr 2019): 185–193.https://doi.org/10.1016/j.jtherbio.2019.01.013Justin G. Boyles, Danielle L. Levesque, Julia Nowack, Michał S. Wojciechowski, Clare Stawski, Andrea Fuller, Ben Smit, Glenn J. Tattersall , Ecology and Evolution 9, no.2121 ( 2019): 12020.https://doi.org/10.1002/ece3.5721Shannon E. Currie No effect of season on the electrocardiogram of long-eared bats (Nyctophilus gouldi) during torpor, Journal of Comparative Physiology B 188, no.44 (Apr 2018): 695–705.https://doi.org/10.1007/s00360-018-1158-1Michel Genoud, Karin Isler, Robert D. Martin Comparative analyses of basal rate of metabolism in mammals: data selection does matter, Biological Reviews 93, no.11 (Jul 2017): 404–438.https://doi.org/10.1111/brv.12350Imran Khaliq, Katrin Böhning-Gaese, Roland Prinzinger, Markus Pfenninger, Christian Hof The influence of thermal tolerances on geographical ranges of endotherms, Global Ecology and Biogeography 26, no.66 (Mar 2017): 650–668.https://doi.org/10.1111/geb.12575Roberto F. Nespolo, Jaiber J. Solano-Iguaran, and Francisco Bozinovic Phylogenetic Analysis Supports the Aerobic-Capacity Model for the Evolution of Endothermy, The American Naturalist 189, no.11 (Nov 2016): 13–27.https://doi.org/10.1086/689598Chris M. Wood, Kevin V. Brix, Gudrun De Boeck, Harold L. Bergman, Adalto Bianchini, Lucas F. Bianchini, John N. Maina, Ora E. Johannsson, Geraldine D. Kavembe, Michael B. Papah, Kisipan M. Letura, Rodi O. Ojoo Mammalian metabolic rates in the hottest fish on earth, Scientific Reports 6, no.11 (Jun 2016).https://doi.org/10.1038/srep26990Thomas Ruf, Fritz Geiser Daily torpor and hibernation in birds and mammals, Biological Reviews 90, no.33 (Aug 2014): 891–926.https://doi.org/10.1111/brv.12137K. R. Taylor-Burt, J. Monroy, C. Pace, S. Lindstedt, K. C. Nishikawa Shiver me titin! Elucidating titin's role in shivering thermogenesis, Journal of Experimental Biology 218, no.55 (Jan 2015): 694–702.https://doi.org/10.1242/jeb.111849Fritz Geiser Metabolic Rate and Body Temperature Reduction During Hibernation and Daily Torpor, Annual Review of Physiology 66, no.11 (Mar 2004): 239–274.https://doi.org/10.1146/annurev.physiol.66.032102.115105B. G. Lovegrove The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum, Journal of Comparative Physiology B 173, no.22 (Feb 2003): 87–112.https://doi.org/10.1007/s00360-002-0309-5 Craig R. White The Influence of Foraging Mode and Arid Adaptation on the Basal Metabolic Rates of Burrowing Mammals C. R. White, Physiological and Biochemical Zoology 76, no.11 (Jul 2015): 122–134.https://doi.org/10.1086/367940Giuseppe Piccione, Giovanni Caola, Roberto Refinetti Circadian modulation of starvation-induced hypothermia in sheep and goats, Chronobiology International 19, no.33 (Jul 2009): 531–541.https://doi.org/10.1081/CBI-120004225Kerry W. Withers, Debra H. White, John Billingsley Torpor in the Carnivorous Marsupial Sminthopsis macroura: Effects of Food Quality and Quantity, (Jan 2000): 127–137.https://doi.org/10.1007/978-3-662-04162-8_14Barry G. Lovegrove Daily Heterothermy in Mammals: Coping with Unpredictable Environments, (Jan 2000): 29–40.https://doi.org/10.1007/978-3-662-04162-8_3 Fritz Geiser , and Thomas Ruf Hibernation versus Daily Torpor in Mammals and Birds: Physiological Variables and Classification of Torpor Patterns, Physiological Zoology 68, no.66 (Sep 2015): 935–966.https://doi.org/10.1086/physzool.68.6.30163788Graham N. Stone, Andy Purvis Warm-up rates during arousal from torpor in heterothermic mammals: physiological correlates and a comparison with heterothermic insects, Journal of Comparative Physiology B 162, no.33 (Apr 1992): 284–295.https://doi.org/10.1007/BF00357536Roberto Refinetti, Michael Menaker The circadian rhythm of body temperature, Physiology & Behavior 51, no.33 (Mar 1992): 613–637.https://doi.org/10.1016/0031-9384(92)90188-8Gregory K. Snyder, James R. Nestler Relationships between body temperature, thermal conductance,Q 10 and energy metabolism during daily torpor and hibernation in rodents, Journal of Comparative Physiology B 159, no.66 (Jan 1990): 667–675.https://doi.org/10.1007/BF00691712Fritz Geiser, R.V Baudinette, Edward J Mcmurchie The effect of temperature on isolated perfused hearts of heterothermic marsupials, Comparative Biochemistry and Physiology Part A: Physiology 93, no.22 (Jan 1989): 331–335.https://doi.org/10.1016/0300-9629(89)90046-7 Brian K. McNab Complications Inherent in Scaling the Basal Rate of Metabolism in Mammals, The Quarterly Review of Biology 63, no.11 (Oct 2015): 25–54.https://doi.org/10.1086/415715Fritz Geiser Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition?, Journal of Comparative Physiology B 158, no.11 (Jan 1988): 25–37.https://doi.org/10.1007/BF00692726Henry J. Harlow Influence of the Pineal Gland and Melatonin on Blood Flow and Evaporative Water Loss During Heat Stress in Rats, Journal of Pineal Research 4, no.22 (Apr 1987): 147–159.https://doi.org/10.1111/j.1600-079X.1987.tb00851.xPawel Koteja On the relation between basal and maximum metabolic rate in mammals, Comparative Biochemistry and Physiology Part A: Physiology 87, no.11 (Jan 1987): 205–208.https://doi.org/10.1016/0300-9629(87)90447-6Fritz Geiser Thermoregulation and torpor in the Kultarr,Antechinomys laniger (Marsupialia: Dasyuridae), Journal of Comparative Physiology B 156, no.55 (Jan 1986): 751–757.https://doi.org/10.1007/BF00692755Marilyn L. Zimny, Michele F. Stonge Intramitochondrial inclusions in the kidney of the pygmy mouse, Comparative Biochemistry and Physiology Part A: Physiology 85, no.33 (Jan 1986): 557–562.https://doi.org/10.1016/0300-9629(86)90446-9Fritz Geiser, R. V. Baudinette The influence of temperature and photophase on daily torpor inSminthopsis macroura (Dasyuridae: Marsupialia), Journal of Comparative Physiology B 156, no.11 (Nov 1985): 129–134.https://doi.org/10.1007/BF00692935 Steven D. Thompson Subspecific Differences in Metabolism, Thermoregulation, and Torpor in the Western Harvest Mouse Reithrodontomys megalotis, Physiological Zoology 58, no.44 (Sep 2015): 430–444.https://doi.org/10.1086/physzool.58.4.30156018 Rochelle Buffenstein The Effect of Starvation, Food Restriction, and Water Deprivation on Thermoregulation and Average Daily Metabolic Rates in Gerbillus pusillus, Physiological Zoology 58, no.33 (Sep 2015): 320–328.https://doi.org/10.1086/physzool.58.3.30156003Virginia Hayssen, Robert C Lacy Basal metabolic rates in mammals: Taxonomic differences in the allometry of BMR and body mass, Comparative Biochemistry and Physiology Part A: Physiology 81, no.44 (Jan 1985): 741–754.https://doi.org/10.1016/0300-9629(85)90904-1Michael G. Tannenbaum, Edward B. Pivorun Differences in daily torpor patterns among three southeastern species ofPeromyscus, Journal of Comparative Physiology B 154, no.33 (Apr 1984): 233–236.https://doi.org/10.1007/BF02464401CHARLES P. LYMAN, JOHN S. WILLIS, ANDRÉ MALAN, LAWRENCE C.H. WANG Who Is Who among the Hibernators, (Jan 1982): 12–36.https://doi.org/10.1016/B978-0-12-460420-9.50006-4 Brian K. McNab Food Habits, Energetics, and the Population Biology of Mammals, The American Naturalist 116, no.11 (Oct 2015): 106–124.https://doi.org/10.1086/283614S.Robert Bradley, Daniel R Deavers A re-examination of the relationship between thermal conductance and body weight in mammals, Comparative Biochemistry and Physiology Part A: Physiology 65, no.44 (Jan 1980): 465–476.https://doi.org/10.1016/0300-9629(80)90060-2 Jack W. Hudson , and Irena M. Scott Daily Torpor in the Laboratory Mouse, Mus musculus Var. Albino, Physiological Zoology 52, no.22 (Sep 2015): 205–218.https://doi.org/10.1086/physzool.52.2.30152564Robert L. Wallis Responses to low temperature in small marsupial mammals, Journal of Thermal Biology 4, no.22 (Apr 1979): 105–111.https://doi.org/10.1016/0306-4565(79)90022-6Timothy M Casey, Philip C Withers, Kathleen K Casey Metabolic and respiratory responses of arctic mammals to ambient temprature during the summer, Comparative Biochemistry and Physiology Part A: Physiology 64, no.33 (Jan 1979): 331–341.https://doi.org/10.1016/0300-9629(79)90452-3 G. Robert Lynch , F. Daniel Vogt , and Harvey R. Smith Seasonal Study of Spontaneous Daily Torpor in the White-Footed Mouse, Peromyscus leucopus, Physiological Zoology 51, no.33 (Sep 2015): 289–299.https://doi.org/10.1086/physzool.51.3.30155746Andrew J. Lechner The scaling of maximal oxygen consumption and pulmonary dimensions in small mammals, Respiration Physiology 34, no.11 (Jul 1978): 29–44.https://doi.org/10.1016/0034-5687(78)90047-6Richard M. Edwards, Howard Haines Effects of ambient water vapor pressure and temperature on evaporative water loss inPeromyscus maniculatus andMus musculus, Journal of Comparative Physiology ? B 128, no.22 (Jan 1978): 177–184.https://doi.org/10.1007/BF00689482H.C. HELLER, G.L. FLORANT, S.F. GLOTZBACH, J.M. WALKER, R.J. BERGER Sleep and Torpor—Homologous Adaptations for Energy Conservation, (Jan 1978): 269–296.https://doi.org/10.1016/B978-0-12-177050-1.50011-0Jack W. Hudson SHALLOW, DAILY TORPOR: A THERMOREGULATORY ADAPTATION, (Jan 1978): 67–108.https://doi.org/10.1016/B978-0-12-734550-5.50008-9Robert L. Wallis Torpor in the dasyurid marsupial Antechinus stuartii, Comparative Biochemistry and Physiology Part A: Physiology 53, no.44 (Jan 1976): 319–322.https://doi.org/10.1016/S0300-9629(76)80147-8Michael S. Hudecki, C.A. Privitera Lipid changes in tissues from the cold-exposed, torpid and aroused pigmy mouse, Baiomys taylori, Cryobiology 12, no.33 (Jun 1975): 266–275.https://doi.org/10.1016/0011-2240(75)90025-5Richard W. Hill Daily torpor in Peromyscus leucopus on an adequate diet, Comparative Biochemistry and Physiology Part A: Physiology 51, no.22 (Jun 1975): 413–423.https://doi.org/10.1016/0300-9629(75)90389-8Bruce A. Wunder A model for estimating metabolic rate of active or resting mammals, Journal of Theoretical Biology 49, no.22 (Feb 1975): 345–354.https://doi.org/10.1016/0022-5193(75)90177-0Bruce A. Wunder A model for estimating metabolic rate of active or resting mammals, Journal of Theoretical Biology 49, no.11 (Jan 1975): 345–354.https://doi.org/10.1016/S0022-5193(75)80039-7J.W. HUDSON TORPIDITY IN MAMMALS, (Jan 1973): 97–165.https://doi.org/10.1016/B978-0-12-747603-2.50009-6M. S. Hudecki, C. A. Privitera Light microscopic and fine structural changes in the brown adipose tissue from torpid and aroused pigmy mice (Baiomys taylori), Journal of Experimental Zoology 181, no.11 (Jul 1972): 129–143.https://doi.org/10.1002/jez.1401810114P.M. Kennedy, W.V. Macfarlane Oxygen consumption and water turnover of the fat-tailed marsupials Dasycercus cristicauda and Sminthopsis crassicaudata, Comparative Biochemistry and Physiology Part A: Physiology 40, no.33 (Nov 1971): 723–732.https://doi.org/10.1016/0300-9629(71)90257-XJack W. Hudson Thermal sensitivity of isolated-perfused hearts from the ground squirrels, citellus tereticaudus and Citellus tridecemlineatus, Zeitschrift f�r Vergleichende Physiologie 71, no.33 (Jan 1971): 342–349.https://doi.org/10.1007/BF00298145 Lawrence Chia-Huang Wang, Jack W. Hudson Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus, Comparative Biochemistry and Physiology Part A: Physiology 38, no.11 (Jan 1971): 59–90.https://doi.org/10.1016/0300-9629(71)90098-3J.S. Hart RODENTS, (Jan 1971): 1–149.https://doi.org/10.1016/B978-0-12-747602-5.50007-1Richard E MacMillen, Anthony K Lee Energy metabolism and pulmocutaneous water loss of Australian hopping mice, Comparative Biochemistry and Physiology 35, no.22 (Jul 1970): 355–369.https://doi.org/10.1016/0010-406X(70)90601-8J Emil Morhardt Body temperatures of white-footed mice (Peromyscus sp.) during daily torpor, Comparative Biochemistry and Physiology 33, no.22 (Mar 1970): 423–439.https://doi.org/10.1016/0010-406X(70)90359-2Charles P. Lyman Thermoregulation and Metabolism in Bats**Since this chapter was submitted an excellent article by B. K. McNab, entitled "The economics of temperature regulation in neotropical bats," has appeared in Comparative Biochemistry and Physiology, Vol. 31, pp. 227–268, 1969, and the reader is referred to this for further information., (Jan 1970): 301–330.https://doi.org/10.1016/B978-0-12-758001-2.50014-9James D. Rising A comparison of metabolism and evaporative water loss of baltimore and bullock orioles, Comparative Biochemistry and Physiology 31, no.66 (Dec 1969): 915–925.https://doi.org/10.1016/0010-406X(69)91801-5Brian K. McNab The economics of temperature regulation in neutropical bats, Comparative Biochemistry and Physiology 31, no.22 (Oct 1969): 227–268.https://doi.org/10.1016/0010-406X(69)91651-XLynda White, Howard Haines, Thomas Adams Cardiac output related to body weight in small mammals, Comparative Biochemistry and Physiology 27, no.22 (Nov 1968): 559–565.https://doi.org/10.1016/0010-406X(68)90252-1George A. Bartholomew, William R. Dawson TEMPERATURE REGULATION IN DESERT MAMMALS, (Jan 1968): 395–421.https://doi.org/10.1016/B978-1-4831-9868-2.50016-5Robert C. Lasiewski, Wesley W. Weathers, Marvin H. Bernstein Physiological responses of the giant hummingbird, Patagona gigas, Comparative Biochemistry and Physiology 23, no.33 (Dec 1967): 797–813.https://doi.org/10.1016/0010-406X(67)90342-8Robert M. Chew, Elizabeth Spencer Development of metabolic response to cold in young mice of four species, Comparative Biochemistry and Physiology 22, no.33 (Sep 1967): 873–888.https://doi.org/10.1016/0010-406X(67)90778-5Robert M. Chew, Robert G. Lindberg, Page Hayden Temperature regulation in the little pocket mouse, Perognathus longimembris, Comparative Biochemistry and Physiology 21, no.33 (Jun 1967): 487–505.https://doi.org/10.1016/0010-406X(67)90447-1Clyde F. Herreid, Brina Kessel Thermal conductance in birds and mammals, Comparative Biochemistry and Physiology 21, no.22 (May 1967): 405–414.https://doi.org/10.1016/0010-406X(67)90802-XPhilip Leitner, John E. Nelson Body temperature, oxygen consumption and heart rate in the Australian false vampire bat, Macroderma gigas, Comparative Biochemistry and Physiology 21, no.11 (Apr 1967): 65–74.https://doi.org/10.1016/0010-406X(67)90115-6Philip Leitner Body temperature, oxygen consumption, heart rate and shivering in the California mastiff bat, Eumops perotis, Comparative Biochemistry and Physiology 19, no.22 (Oct 1966): 431–443.https://doi.org/10.1016/0010-406X(66)90152-6Richard E Macmillen Aestivation in the cactus mouse, Peromyscus eremicus, Comparative Biochemistry and Physiology 16, no.22 (Oct 1965): 227–248.https://doi.org/10.1016/0010-406X(65)90062-9

Referência(s)
Altmetric
PlumX