Effects of Water Phase Change on the Material Response of Low-Density Carbon-Phenolic Ablators
2016; American Institute of Aeronautics and Astronautics; Volume: 30; Issue: 2 Linguagem: Inglês
10.2514/1.t4814
ISSN1533-6808
AutoresAli D. Omidy, Francesco Panerai, Jean Lachaud, Nagi N. Mansour, Alexandre Martin,
Tópico(s)Combustion and flame dynamics
ResumoNo AccessTechnical NoteEffects of Water Phase Change on the Material Response of Low-Density Carbon-Phenolic AblatorsAli D. Omidy, Francesco Panerai, Jean R. Lachaud, Nagi N. Mansour and Alexandre MartinAli D. OmidyUniversity of Kentucky, Lexington, Kentucky 40506, Francesco PaneraiUniversity of Kentucky, Lexington, Kentucky 40506, Jean R. LachaudUniversity of California Santa Cruz, Moffett Field, California 94043, Nagi N. MansourNASA Ames Research Center, Moffett Field, California 94043 and Alexandre MartinUniversity of Kentucky, Lexington, Kentucky 40506Published Online:25 Feb 2016https://doi.org/10.2514/1.T4814SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Martin A. and Boyd I. D., “Modeling of Heat Transfer Attenuation by Ablative Gases During the Stardust Reentry,” Journal of Thermophysics and Heat Transfer, Vol. 29, No. 3, 2015, pp. 450–466. doi:https://doi.org/10.2514/1.T4202 JTHTEO 0887-8722 LinkGoogle Scholar[2] Amar A. J., Blackwell B. F. and Edwards J. R., “One-Dimensional Ablation Using a Full Newton’s Method and Finite Control Volume Procedure,” Journal of Thermophysics and Heat Transfer, Vol. 22, No. 1, 2008, pp. 71–82. doi:https://doi.org/10.2514/1.29610 JTHTEO 0887-8722 LinkGoogle Scholar[3] Amar A. J., Blackwell B. F. and Edwards J. R., “Development and Verification of a One-Dimensional Ablation Code Including Pyrolysis Gas Flow,” Journal of Thermophysics and Heat Transfer, Vol. 23, No. 1, 2009, pp. 59–71. doi:https://doi.org/10.2514/1.36882 JTHTEO 0887-8722 LinkGoogle Scholar[4] Tran H. K., Johnson C. E., Rasky D. J., Hui F. C. L., Hsu M.-T. and Chen Y. K., “Phenolic Impregnated Carbon Ablators (PICA) for Discovery Class Missions,” 31st AIAA Thermophysics Conference, AIAA Paper 1996-1911, June 1996. doi:https://doi.org/10.2514/6.1996-1911 LinkGoogle Scholar[5] Kontinos D. A. and Wright M. J., “Introduction: Atmospheric Entry of the Stardust Sample Return Capsule,” Journal of Spacecraft and Rockets, Vol. 47, No. 5, 2010, pp. 705–707. doi:https://doi.org/10.2514/1.51522 JSCRAG 0022-4650 LinkGoogle Scholar[6] “SpaceX Manufactured Heat Shield Material Passes High Temperature Tests Simulating [Press Release],” SpaceX, Hawthorne, CA, 2014, http://www.spacex.com/press/2012/12/19/spacex-manufactured-heat-shield-material-passes-high-temperature-tests-simulating [retrieved Nov. 2012]. Google Scholar[7] “Seeing Red,” Nature, Vol. 479, No. 7374, 2011, pp. 446–446. doi:https://doi.org/10.1038/479446a CrossrefGoogle Scholar[8] Bose D., Santos J. A., Rodriguez E., White T. R. and Mahzari M., “Mars Science Laboratory Heat Shield Instrumentation and Arc Jet Characterization,” 44th AIAA Thermophysics Conference, AIAA Paper 2013-2778, 2013. doi:https://doi.org/10.2514/6.2013-2778 LinkGoogle Scholar[9] Santos J. A., Oishi T. and Martinez E. R., “Isotherm Sensor Calibration Program for Mars Science Laboratory Heat Shield Flight Data Analysis,” 42nd AIAA Thermophysics Conference, AIAA Paper 2011-3955, 2011. doi:https://doi.org/10.2514/6.2011-3955 LinkGoogle Scholar[10] Bose D., White T., Mahzari M. and Edquist K., “Reconstruction of Aerothermal Environment and Heat Shield Response of Mars Science Laboratory,” Journal of Spacecraft and Rockets, Vol. 51, No. 4, 2014, pp. 1174–1184. doi:https://doi.org/10.2514/1.A32783 JSCRAG 0022-4650 LinkGoogle Scholar[11] Mahzari M., Braun R. D., White T. R. and Bose D., “Inverse Estimation of the Mars Science Laboratory Entry Aeroheating and Heatshield Response,” Journal of Spacecraft and Rockets, Vol. 52, No. 4, 2015, pp. 1203–1216. doi:https://doi.org/10.2514/1.A33053 LinkGoogle Scholar[12] White T. R., Mahzari M., Bose D. and Santos J. A., “Post-Flight Analysis of the Mars Science Laboratory Entry Aerothermal Environment and Thermal Protection System Response,” 44th AIAA Thermophysics Conference, AIAA Paper 2013-2779, 2013. doi:https://doi.org/10.2514/6.2013-2779 LinkGoogle Scholar[13] Bose D., Olson M., Laub B., White T. R., Feldman J., Santos J. and Mahzari M., “Initial Assessment of Mars Science Laboratory Heatshield Instrumentation and Flight Data,” 51st AIAA Aerospace Sciences Meeting, AIAA Paper 2013-908, Jan. 2013. doi:https://doi.org/10.2514/6.2013-908 LinkGoogle Scholar[14] Mahzari M., Braun R. D., White T. R. and Bose D., “Preliminary Analysis of the Mars Science Laboratory’s Entry Aerothermodynamic Environment and Thermal Protection System Performance,” 51st AIAA Aerospace Sciences Meeting, AIAA Paper 2013-0185, Jan. 2013. doi:https://doi.org/10.2514/6.2013-185 LinkGoogle Scholar[15] Chen Y.-K. and Milos F. S., “Ablation and Thermal Response Program for Spacecraft Heatshield Analysis,” Journal of Spacecraft and Rockets, Vol. 36, No. 3, 1999, pp. 475–483. doi:https://doi.org/10.2514/2.3469 JSCRAG 0022-4650 LinkGoogle Scholar[16] Smith D. L., Omidy A. D., Weng H., White T. R. and Martin A., “Effects of Water Presence on Low Temperature Phenomenon in Porous TPS Materials,” 45th AIAA Thermophysics Conference, AIAA Paper 2015-2505, 2015. doi:https://doi.org/10.2514/6.2015-2505 LinkGoogle Scholar[17] Smith D. L., White T. R. and Martin A., “Comparisons of PICA In-Depth Material Performance and Ablator Response Modeling from MEDLI Arc Jet Tests,” 45th AIAA Thermophysics Conference, AIAA Paper 2015-2664, 2015. doi:https://doi.org/10.2514/6.2015-2664 LinkGoogle Scholar[18] Kobayashi Y., Sakai T., Suzuki T., Fujita K., Okuyama K., Kato S. and Kitagawa K., “An Experimental Study on Thermal Response of Low Density Carbon-Phenolic Ablators,” 47th AIAA Aerospace Sciences Meeting, AIAA Paper 2009-1587, Jan. 2009. doi:https://doi.org/10.2514/6.2009-1587 LinkGoogle Scholar[19] Sepka S., Gasch M., Beck R. A. and White S., “Testing of Candidate Rigid Heat Shield Materials at LHMEL for the Entry, Descent, and Landing Technology Development Project,” Advanced Ceramic Coatings and Materials for Extreme Environments 2: Ceramic Engineering and Science Proceeding, Vol. 33, 2012, pp. 129–156. doi:https://doi.org/10.1002/9781118217474.ch11 Google Scholar[20] Szalai C., Slimko E. and Hoffman P., “Mars Science Laboratory Heatshield Development, Implementation, and Lessons Learned,” Journal of Spacecraft and Rockets, Vol. 51, No. 4, 2014, pp. 1167–1173. doi:https://doi.org/10.2514/1.A32673 JSCRAG 0022-4650 LinkGoogle Scholar[21] Wong H.-W., Peck J., Edwards R., Reinisch G., Lachaud J. and Mansour N. N., “Measurement of Pyrolysis Products from Phenolic Polymer Thermal Decomposition,” 52nd Aerospace Sciences Meeting, AIAA Paper 2014-1388, Jan. 2014. doi:https://doi.org/10.2514/6.2014-1388 LinkGoogle Scholar[22] Wong H.-W., Peck J., Assif J., Lachaud J. and Mansour N. N., “Quantitative Determination of Species Production from the Pyrolysis of the Phenolic Impregnated Carbon Ablator (PICA),” 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-1447, 2015. doi:https://doi.org/10.2514/6.2015-1447 LinkGoogle Scholar[23] Wong H.-W., Peck J., Bonomi R. E., Assif J., Panerai F., Reinisch G., Lachaud J. and Mansour N. N., “Quantitative Determination of Species Production from Phenol-Formaldehyde Resin Pyrolysis,” Polymer Degradation and Stability, Vol. 112, Jan. 2015, pp. 122–131. doi:https://doi.org/10.1016/j.polymdegradstab.2014.12.020 CrossrefGoogle Scholar[24] Bessire B. K., Lahankar S. A. and Minton T. K., “Pyrolysis of Phenolic Impregnated Carbon Ablator (PICA),” ACS Applied Materials & Interfaces, Vol. 7, No. 3, 2015, pp. 1383–1395. doi:https://doi.org/10.1021/am507816f AAMICK 1944-8244 CrossrefGoogle Scholar[25] Qi T, ., Bauschlicher C. W., Lawson J. W., Desai T. G. and Reed E. J., “Comparison of ReaxFF, DFTB, and DFT for Phenolic Pyrolysis. 1. Molecular Dynamics Simulations,” Journal of Physical Chemistry A, Vol. 117, No. 44, 2013, pp. 11,115–11,125. doi:https://doi.org/10.1021/jp4081096 JPCAFH 1089-5639 CrossrefGoogle Scholar[26] Bauschlicher C. W., Qi T., Reed E. J., Lawson J. W. and Desai T. G., “Comparison of ReaxFF, DFTB, and DFT for Phenolic Pyrolysis. 2. Elementary Reaction Paths,” Journal of Physical Chemistry A, Vol. 117, No. 44, 2013, pp. 11,126–11,135. doi:https://doi.org/10.1021/jp408113w JPCAFH 1089-5639 CrossrefGoogle Scholar[27] Martin A. and Boyd I. D., “Non-Darcian Behavior of Pyrolysis Gas in a Thermal Protection System,” Journal of Thermophysics and Heat Transfer, Vol. 24, No. 1, 2010, pp. 60–68. doi:https://doi.org/10.2514/1.44103 JTHTEO 0887-8722 LinkGoogle Scholar[28] Weng H., Bailey S. C. C. and Martin A., “Numerical Study of Iso-Q Sample Geometric Effects on Charring Ablative Materials,” International Journal of Heat and Mass Transfer, Vol. 80, Jan. 2015, pp. 570–596. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.040 IJHMAK 0017-9310 CrossrefGoogle Scholar[29] Weng H. and Martin A., “Numerical Investigation of Thermal Response Using Orthotropic Charring Ablative Material,” Journal of Thermophysics and Heat Transfer, Vol. 29, No. 3, 2015, pp. 429–438. doi:https://doi.org/10.2514/1.T4576 JTHTEO 0887-8722 LinkGoogle Scholar[30] Weng H. and Martin A., “Numerical Investigation of Geometric Effects of Stardust Return Capsule Heat Shield,” AIAA Paper 2015-0211, 2015. doi:https://doi.org/10.2514/6.2015-0211 LinkGoogle Scholar[31] Weng H. and Martin A., “Multidimensional Modeling of Pyrolysis Gas Transport Inside Charring Ablative Materials,” Journal of Thermophysics and Heat Transfer, Vol. 28, No. 4, 2014, pp. 583–597. doi:https://doi.org/10.2514/1.T4434 JTHTEO 0887-8722 LinkGoogle Scholar[32] Milos F. and Chen Y.-K., “Ablation and Thermal Property Model for Phenolic Impregnated Carbon Ablator (PICA),” NASA TM 2009-215377, March 2009. Google Scholar[33] Karlgaard C. D., Kutty P., Schoenenberger M., Shidner J. and Munk M., “Mars Entry Atmospheric Data System Trajectory Reconstruction Algorithms and Flight Results,” 51st AIAA Aerospace Sciences Meeting, AIAA Paper 2013-0028, Jan. 2013. doi:https://doi.org/10.2514/6.2013-28 LinkGoogle Scholar[34] Edquist K. T., Hollis B. R., Johnston C. O., Bose D., White T. R. and Mahzari M., “Mars Science Laboratory Heatshield Aerothermodynamics: Design and Reconstruction,” 44th AIAA Thermophysics Conference, AIAA Paper 2013-2781, 2013. doi:https://doi.org/10.2514/6.2013-2781 LinkGoogle Scholar[35] Martin A., Cozmuta I., Boyd I. D. and Wright M. J., “Kinetic Rates for Gas Phase Chemistry of Phenolic Based Carbon Ablator Decomposition in Atmospheric Air,” Journal of Thermophysics and Heat Transfer, Vol. 29, No. 2, 2015, pp. 222–240. doi:https://doi.org/10.2514/1.T4184 JTHTEO 0887-8722 LinkGoogle Scholar[36] Lachaud J. and Mansour N. N., “Porous-Material Analysis Toolbox Based on OpenFOAM and Applications,” Journal of Thermophysics and Heat Transfer, Vol. 28, No. 2, 2014, pp. 191–202. doi:https://doi.org/10.2514/1.T4262 JTHTEO 0887-8722 LinkGoogle Scholar[37] Lachaud J., Magin T. E., Cozmuta I. and Mansour N. N., “A Short Review of Ablative-Material Response Models and Simulation Tools,” Proceedings of the 7th European Symposium on Aerothermodynamics, European Space Agency, Paris, 2011, pp. 473–9. Google Scholar[38] Omidy A. D., Panerai F., Lachaud J., Mansour N., Cozmuta I. and Martin A., “Code-to-Code Comparison, and Material Response Modeling of Stardust and MSL Using PATO and FIAT,” NASA CR-2015-218960, 2015. Google Scholar[39] Kandula M., “On the Effective Thermal Conductivity of Porous Packed Beds with Uniform Spherical Particles,” Journal of Porous Media, Vol. 14, No. 10, 2011, pp. 919–926. doi:https://doi.org/10.1615/JPorMedia.v14.i10 CrossrefGoogle Scholar[40] Haynes W. M., (ed.), CRC Handbook of Chemistry and Physics, 95th ed., CRC Press, Boca Raton, FL, 2014, p. 6-1. Google Scholar Previous article
Referência(s)