The Oxygen Consumption and Bioenergetics of Harvest Mice
1960; University of Chicago Press; Volume: 33; Issue: 2 Linguagem: Inglês
10.1086/physzool.33.2.30152302
ISSN1937-4267
Autores Tópico(s)Bat Biology and Ecology Studies
ResumoPrevious articleNext article No AccessThe Oxygen Consumption and Bioenergetics of Harvest MiceOliver P. PearsonOliver P. Pearson Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 33, Number 2Apr., 1960 Article DOIhttps://doi.org/10.1086/physzool.33.2.30152302 Views: 10Total views on this site Citations: 64Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1960 University of ChicagoPDF download Crossref reports the following articles citing this article:Pavlína Wiedenová, Radim Šumbera, Jan Okrouhlík Social thermoregulation and socio-physiological effect in the subterranean Mashona mole-rat (Fukomys darlingi), Journal of Thermal Biology 78 (Dec 2018): 367–373.https://doi.org/10.1016/j.jtherbio.2018.10.020Caitlin L. Lewarch, Hopi E. Hoekstra The evolution of nesting behaviour in Peromyscus mice, Animal Behaviour 139 (May 2018): 103–115.https://doi.org/10.1016/j.anbehav.2018.03.008Michel Genoud, Karin Isler, Robert D. Martin Comparative analyses of basal rate of metabolism in mammals: data selection does matter, Biological Reviews 93, no.11 (Jul 2017): 404–438.https://doi.org/10.1111/brv.12350Imran Khaliq, Katrin Böhning-Gaese, Roland Prinzinger, Markus Pfenninger, Christian Hof The influence of thermal tolerances on geographical ranges of endotherms, Global Ecology and Biogeography 26, no.66 (Mar 2017): 650–668.https://doi.org/10.1111/geb.12575Katherine R. Smith, Laureen Barthman-Thompson, William R. Gould, Karen E. Mabry, Cédric Sueur Effects of Natural and Anthropogenic Change on Habitat Use and Movement of Endangered Salt Marsh Harvest Mice, PLoS ONE 9, no.1010 (Oct 2014): e108739.https://doi.org/10.1371/journal.pone.0108739Sean Tomlinson, Philip C. Withers, Shane K. Maloney Huddling behaviour and energetics of Sminthopsis spp. (Marsupialia, Dasyruidae) in response to environmental challenge, Physiology & Behavior 128 (Apr 2014): 9–15.https://doi.org/10.1016/j.physbeh.2014.01.020Caroline Gilbert, Dominic McCafferty, Yvon Le Maho, Jean-Marc Martrette, Sylvain Giroud, Stéphane Blanc, André Ancel One for all and all for one: the energetic benefits of huddling in endotherms, Biological Reviews 92 (Dec 2009): no–no.https://doi.org/10.1111/j.1469-185X.2009.00115.xZ.-J. Zhao, J. Cao Effect of fur removal on the thermal conductance and energy budget in lactating Swiss mice, Journal of Experimental Biology 212, no.1616 (Jul 2009): 2541–2549.https://doi.org/10.1242/jeb.029603Juan Kotze, Nigel C. Bennett, Michael Scantlebury The energetics of huddling in two species of mole-rat (Rodentia: Bathyergidae), Physiology & Behavior 93, no.1-21-2 (Jan 2008): 215–221.https://doi.org/10.1016/j.physbeh.2007.08.016C. Gilbert, S. Blanc, Y. Le Maho, A. Ancel Energy saving processes in huddling emperor penguins: from experiments to theory, Journal of Experimental Biology 211, no.11 (Jan 2008): 1–8.https://doi.org/10.1242/jeb.005785E. Krol, M. Murphy, J. R. Speakman Limits to sustained energy intake. X. Effects of fur removal on reproductive performance in laboratory mice, Journal of Experimental Biology 210, no.2323 (Dec 2007): 4233–4243.https://doi.org/10.1242/jeb.009779Caroline Gilbert, Stéphane Blanc, Sylvain Giroud, Marie Trabalon, Yvon Le Maho, Martine Perret, André Ancel Role of huddling on the energetic of growth in a newborn altricial mammal, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 293, no.22 (Aug 2007): R867–R876.https://doi.org/10.1152/ajpregu.00081.2007Alexander S. Kauffman, Matthew J. Paul, Matthew P. Butler, Irving Zucker Huddling, locomotor, and nest-building behaviors of furred and furless Siberian hamsters, Physiology & Behavior 79, no.22 (Jul 2003): 247–256.https://doi.org/10.1016/S0031-9384(03)00115-XAna Paula Cutrera, C.Daniel Antinuchi, Cristina Busch Thermoregulatory development in pups of the subterranean rodent Ctenomys talarum, Physiology & Behavior 79, no.22 (Jul 2003): 321–330.https://doi.org/10.1016/S0031-9384(03)00116-1B. G. Lovegrove The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum, Journal of Comparative Physiology B 173, no.22 (Feb 2003): 87–112.https://doi.org/10.1007/s00360-002-0309-5Alexander S. Kauffman, Alessandra Cabrera, Irving Zucker Energy intake and fur in summer- and winter-acclimated Siberian hamsters ( Phodopus sungorus), American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 281, no.22 (Aug 2001): R519–R527.https://doi.org/10.1152/ajpregu.2001.281.2.R519Luis A. Ebensperger A review of the evolutionary causes of rodent group-living, Acta Theriologica 46, no.22 (Jun 2001): 115–144.https://doi.org/10.1007/BF03192423Abel Bult, Carol B. Lynch Multiple selection responses in house mice bidirectionally selected for thermoregulatory nest-building behavior: Crosses of replicate lines, Behavior Genetics 26, no.44 (Jul 1996): 439–446.https://doi.org/10.1007/BF02359488Joseph B. Williams Communal Cavity Roosting in Green Woodhoopoes: Consequences for Energy Expenditure and the Seasonal Pattern of Mortality, The Auk 111, no.22 (Apr 1994): 292–299.https://doi.org/10.2307/4088594C. R. Brown, G. G. Foster The thermal and energetic significance of clustering in the speckled mousebird, Colius striatus, Journal of Comparative Physiology B 162, no.77 (Nov 1992): 658–664.https://doi.org/10.1007/BF00296648 Jack P. Hayes , John R. Speakman , and Paul A. Racey The Contributions of Local Heating and Reducing Exposed Surface Area to the Energetic Benefits of Huddling by Short-Tailed Field Voles (Microtus agrestis), Physiological Zoology 65, no.44 (Sep 2015): 742–762.https://doi.org/10.1086/physzool.65.4.30158537 D. R. Webb , J. L. Fullenwider , P. A. McClure , L. Profeta , and J. Long Geometry of Maternal-Offspring Contact in Two Rodents, Physiological Zoology 63, no.44 (Sep 2015): 821–844.https://doi.org/10.1086/physzool.63.4.30158179David Benton Models of Mother-Infant Interactions — Their Use to Screen for Psychotropic Activity, (Jan 1989): 508–524.https://doi.org/10.1007/978-94-009-2403-1_35Kim L Cronin, Eric L Bradley The relationship between food intake, body fat and reproductive inhibition in prairie deermice (Peromyscus maniculatus bardii), Comparative Biochemistry and Physiology Part A: Physiology 89, no.44 (Jan 1988): 669–673.https://doi.org/10.1016/0300-9629(88)90851-1Emilred A. Rajendram, Paul F. Brain, Stefano Parmigiani, Marisa Mainardi Effects of ambient temperature on nest construction in four species of laboratory rodents, Bolletino di zoologia 54, no.11 (Jan 1987): 75–81.https://doi.org/10.1080/11250008709355560 Steven D. Thompson Subspecific Differences in Metabolism, Thermoregulation, and Torpor in the Western Harvest Mouse Reithrodontomys megalotis, Physiological Zoology 58, no.44 (Sep 2015): 430–444.https://doi.org/10.1086/physzool.58.4.30156018Virginia Hayssen, Robert C Lacy Basal metabolic rates in mammals: Taxonomic differences in the allometry of BMR and body mass, Comparative Biochemistry and Physiology Part A: Physiology 81, no.44 (Jan 1985): 741–754.https://doi.org/10.1016/0300-9629(85)90904-1Rochelle Buffenstein, Jennifer U. M. Jarvis Thermoregulation and metabolism in the smallest African gerbil, Gerbillus pusillus, Journal of Zoology 205, no.11 (Aug 2009): 107–121.https://doi.org/10.1111/j.1469-7998.1985.tb05616.x D. W. Thomas Fruit Intake and Energy Budgets of Frugivorous Bats, Physiological Zoology 57, no.44 (Sep 2015): 457–467.https://doi.org/10.1086/physzool.57.4.30163347M.Josefina Prieto Anderson, Josefine C Rauch Seasonal changes in white and brown adipose tissues in Clethrionomys gapperi (red-backed vole) and in Microtus pennsylvanicus (meadow vole), Comparative Biochemistry and Physiology Part A: Physiology 79, no.22 (Jan 1984): 305–310.https://doi.org/10.1016/0300-9629(84)90433-XPeg Batchelder, Robert O. Kinney, Lori Demlow, Carol B. Lynch Effects of temperature and social interactions on huddling behavior in Mus musculus, Physiology & Behavior 31, no.11 (Jul 1983): 97–102.https://doi.org/10.1016/0031-9384(83)90102-6Michael Leon, Barbara Woodside Energetic limits on reproduction: Maternal food intake, Physiology & Behavior 30, no.66 (Jun 1983): 945–957.https://doi.org/10.1016/0031-9384(83)90260-3S.P. Goyal, P.K. Ghosh Body weight exponents of metabolic rate and minimal thermal conductance in burrowing desert rodents, Journal of Arid Environments 6, no.11 (Mar 1983): 43–52.https://doi.org/10.1016/S0140-1963(18)31431-9Ronald W. Pauls Energetics of the red squirrel: A laboratory study of the effects of temperature, seasonal acclimatization, use of the nest and exercise, Journal of Thermal Biology 6, no.22 (Apr 1981): 79–86.https://doi.org/10.1016/0306-4565(81)90057-7Timothy M. Casey Nest insulation: Energy savings to brown lemmings using a winter nest, Oecologia 50, no.22 (Jan 1981): 199–204.https://doi.org/10.1007/BF00348038S.Robert Bradley, Daniel R Deavers A re-examination of the relationship between thermal conductance and body weight in mammals, Comparative Biochemistry and Physiology Part A: Physiology 65, no.44 (Jan 1980): 465–476.https://doi.org/10.1016/0300-9629(80)90060-2Robert A Martin, Mario Fiorentini, Frederick Connors Social facilitation of reduced oxygen consumption in Mus musculus and Meriones unguiculatus, Comparative Biochemistry and Physiology Part A: Physiology 65, no.44 (Jan 1980): 519–522.https://doi.org/10.1016/0300-9629(80)90072-9P.C Withers, J.U.M Jarvis The effect of huddling on thermoregulation and oxygen consumption for the naked mole-rat, Comparative Biochemistry and Physiology Part A: Physiology 66, no.22 (Jan 1980): 215–219.https://doi.org/10.1016/0300-9629(80)90154-1G. F. Hayward, J. Phillipson Community structure and functional role of small mammals in ecosystems, (Jan 1979): 135–211.https://doi.org/10.1007/978-94-009-5772-5_4Carol Becker Lynch, Bernard P. Possidente Relationships of maternal nesting to thermoregulatory nesting in house mice (Mus musculus) at warm and cold temperatures, Animal Behaviour 26 (Nov 1978): 1136–1143.https://doi.org/10.1016/0003-3472(78)90103-3P. J. Moors Studies of the metabolism, food consumption and assimilation efficiency of a small carnivore, the weasel (Mustela nivalis L.), Oecologia 27, no.33 (Sep 1977): 185–202.https://doi.org/10.1007/BF00347466 Marjorie L. Reaka , and Kenneth B. Armitage The Water Economy of Harvest Mice from Xeric and Mesic Environments, Physiological Zoology 49, no.33 (Sep 2015): 307–327.https://doi.org/10.1086/physzool.49.3.30155690 Harriet Glaser , and Sheldon Lustick Energetics and Nesting Behavior of the Northern White-Footed Mouse, Peromyscus leucopus noveboracensis, Physiological Zoology 48, no.22 (Sep 2015): 105–113.https://doi.org/10.1086/physzool.48.2.30155644Bruce A. Wunder A model for estimating metabolic rate of active or resting mammals, Journal of Theoretical Biology 49, no.22 (Feb 1975): 345–354.https://doi.org/10.1016/0022-5193(75)90177-0Bruce A. Wunder A model for estimating metabolic rate of active or resting mammals, Journal of Theoretical Biology 49, no.11 (Jan 1975): 345–354.https://doi.org/10.1016/S0022-5193(75)80039-7Carol Becker Lynch Environmental modification of nest-building in the white-footed mouse, Peromyscus leucopus, Animal Behaviour 22, no.22 (May 1974): 405–409.https://doi.org/10.1016/S0003-3472(74)80038-2 William J. Platt Metabolic Rates of Short-Tailed Shrews, Physiological Zoology 47, no.22 (Sep 2015): 75–90.https://doi.org/10.1086/physzool.47.2.30155625Carol Becker Lynch, Joseph P. Hegmann Genetic differences influencing behavioral temperature regulation in small mammals. II. Genotype-environment interactions, Behavior Genetics 3, no.22 (Jun 1973): 145–154.https://doi.org/10.1007/BF01067654 B. G. Collins , and S. D. Bradshaw Studies on the Metabolism, Thermoregulation, and Evaporative Water Losses of Two Species of Australian Rats, Rattus villosissimus and Rattus rattus, Physiological Zoology 46, no.11 (Sep 2015): 1–21.https://doi.org/10.1086/physzool.46.1.30152512Russell V Baudinette The impact of social aggregation on the respiratory physiology of australian hopping mice, Comparative Biochemistry and Physiology Part A: Physiology 41, no.11 (Jan 1972): 35–38.https://doi.org/10.1016/0300-9629(72)90030-8J.S. Hart RODENTS, (Jan 1971): 1–149.https://doi.org/10.1016/B978-0-12-747602-5.50007-1D. M. Ogilvie Behavioural thermoregulation and cold adaptation in two strains of white mice, International Journal of Biometeorology 14, no.33 (Sep 1970): 285–291.https://doi.org/10.1007/BF01742072Harry N. Coulombe The role of succulent halophytes in the water balance of salt marsh rodents, Oecologia 4, no.33 (Jan 1970): 223–247.https://doi.org/10.1007/BF00377248Brian K. McNab The economics of temperature regulation in neutropical bats, Comparative Biochemistry and Physiology 31, no.22 (Oct 1969): 227–268.https://doi.org/10.1016/0010-406X(69)91651-XLynda White, Howard Haines, Thomas Adams Cardiac output related to body weight in small mammals, Comparative Biochemistry and Physiology 27, no.22 (Nov 1968): 559–565.https://doi.org/10.1016/0010-406X(68)90252-1Robert M. Chew, Robert G. Lindberg, Page Hayden Temperature regulation in the little pocket mouse, Perognathus longimembris, Comparative Biochemistry and Physiology 21, no.33 (Jun 1967): 487–505.https://doi.org/10.1016/0010-406X(67)90447-1Clyde F. Herreid, Brina Kessel Thermal conductance in birds and mammals, Comparative Biochemistry and Physiology 21, no.22 (May 1967): 405–414.https://doi.org/10.1016/0010-406X(67)90802-X Clyde F. Herreid II Temperature Regulation, Temperature Preference and Tolerance, and Metabolism of Young and Adult Free-Tailed Bats, Physiological Zoology 40, no.11 (Sep 2015): 1–22.https://doi.org/10.1086/physzool.40.1.30152434Manfred D. Engelmann Energetics, Terrestrial Field Studies, and Animal Productivity, (Jan 1966): 73–115.https://doi.org/10.1016/S0065-2504(08)60310-4Vance A. Tucker Oxygen consumption, thermal conductance, and torpor in the California pocket mousePerognathus californicus, Journal of Cellular and Comparative Physiology 65, no.33 (Jun 1965): 393–403.https://doi.org/10.1002/jcp.1030650313J. S. Hayward MICROCLIMATE TEMPERATURE AND ITS ADAPTIVE SIGNIFICANCE IN SIX GEOGRAPHIC RACES OF PEROMYSCUS, Canadian Journal of Zoology 43, no.22 (Mar 1965): 341–350.https://doi.org/10.1139/z65-033 Robert C. Lasiewski Oxygen Consumption of Torpid, Resting, Active, and Flying Hummingbirds, Physiological Zoology 36, no.22 (Sep 2015): 122–140.https://doi.org/10.1086/physzool.36.2.30155436R.A. McCANCE THERMAL STABILITY IN THE NEWLY BORN, (Jan 1962): 339–348.https://doi.org/10.1016/B978-0-08-009683-4.50046-2 George A. Bartholomew , and Richard E. MacMillen Oxygen Consumption, Estivation, and Hibernation in the Kangaroo Mouse, Microdipodops pallidus, Physiological Zoology 34, no.33 (Sep 2015): 177–183.https://doi.org/10.1086/physzool.34.3.30152696
Referência(s)