Heart Rate of Mussels as a Function of Latitude, Intertidal Height, and Acclimation Temperature

1965; University of Chicago Press; Volume: 38; Issue: 4 Linguagem: Inglês

10.1086/physzool.38.4.30152416

ISSN

1937-4267

Autores

Peter E. Pickens,

Tópico(s)

Cephalopods and Marine Biology

Resumo

Previous articleNext article No AccessHeart Rate of Mussels as a Function of Latitude, Intertidal Height, and Acclimation TemperaturePeter E. PickensPeter E. PickensPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 38, Number 4Oct., 1965 Article DOIhttps://doi.org/10.1086/physzool.38.4.30152416 Views: 6Total views on this site Citations: 46Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1965 University of ChicagoPDF download Crossref reports the following articles citing this article:Jeffrey Levinton, Brooke Arena, Riley Pena, M. Zachary Darnell Superior performance of a trailing edge low-latitude population of an intertidal marine invertebrate, Journal of Experimental Marine Biology and Ecology 563 (Jun 2023): 151896.https://doi.org/10.1016/j.jembe.2023.151896James E. Vereycken, David C. Aldridge Bivalve molluscs as biosensors of water quality: state of the art and future directions, Hydrobiologia 850, no.22 (Oct 2022): 231–256.https://doi.org/10.1007/s10750-022-05057-7Eriko Seo, Tadashi Maruyama, Yoshiteru Seo Cardiac function of the deep-sea bivalve, Calyptogena okutanii, observed at atmospheric pressure via magnetic resonance imaging, Deep Sea Research Part I: Oceanographic Research Papers 186 (Aug 2022): 103826.https://doi.org/10.1016/j.dsr.2022.103826Sarah J. Nancollas, Anne E. Todgham The influence of stochastic temperature fluctuations in shaping the physiological performance of the California mussel, Mytilus californianus, Journal of Experimental Biology 225, no.1414 (Jul 2022).https://doi.org/10.1242/jeb.243729Igor Bakhmet, Dmitriy Aristov, Julia Marchenko, Kirill Nikolaev Handling the heat: Changes in the heart rate of two congeneric blue mussel species and their hybrids in response to water temperature, Journal of Sea Research 185 (Jul 2022): 102218.https://doi.org/10.1016/j.seares.2022.102218Nicole E. Moyen, George N. Somero, Mark W. Denny Effects of heat acclimation on cardiac function in the intertidal mussel Mytilus californianus : can laboratory-based indices predict survival in the field?, Journal of Experimental Biology 225, no.99 (May 2022).https://doi.org/10.1242/jeb.243050C Barker, CJ Monaco, CD McQuaid Exposure to fluctuating temperature increases thermal sensitivity in two lineages of the intertidal mussel Perna perna, Marine Ecology Progress Series 668 (Jun 2021): 85–95.https://doi.org/10.3354/meps13713Nicole E. Moyen, Rachel L. Crane, George N. Somero, Mark W. Denny A single heat-stress bout induces rapid and prolonged heat acclimation in the California mussel, Mytilus californianus, Proceedings of the Royal Society B: Biological Sciences 287, no.19401940 (Dec 2020): 20202561.https://doi.org/10.1098/rspb.2020.2561Andrey Victorovich Boroda, Yulia Olegovna Kipryushina, Nelly Adolphovna Odintsova The effects of cold stress on Mytilus species in the natural environment, Cell Stress and Chaperones 25, no.66 (Apr 2020): 821–832.https://doi.org/10.1007/s12192-020-01109-wNicole E. Moyen, George N. Somero, Mark W. Denny Mussel acclimatization to high, variable temperatures is lost slowly upon transfer to benign conditions, The Journal of Experimental Biology 223, no.1313 (May 2020): jeb222893.https://doi.org/10.1242/jeb.222893Jeffrey S. Levinton, Nils Volkenborn, Samuel Gurr, Kelly Correal, Sebastian Villacres, Rui Seabra, Fernando P. Lima Temperature-related heart rate in water and air and a comparison to other temperature-related measures of performance in the fiddler crab Leptuca pugilator (Bosc 1802), Journal of Thermal Biology 88 (Feb 2020): 102502.https://doi.org/10.1016/j.jtherbio.2019.102502Gilles Le Moullac, Claude Soyez, Pierre Lyonnard, Sébastien Chabrier, Léo Milhade, Yannick Gueguen, Benoit Beliaeff Non‐invasive functional exploration techniques for bivalves with applications to pearl oyster Pinctada margaritifera, Reviews in Aquaculture 20 (Jan 2020).https://doi.org/10.1111/raq.12409Jonas C. Geburzi, Morgan L. McCarthy How Do They Do It? – Understanding the Success of Marine Invasive Species, (Aug 2018): 109–124.https://doi.org/10.1007/978-3-319-93284-2_8Nicolle J. Domnik, Elias T. Polymeropoulos, Nicholas G. Elliott, Peter B. Frappell, John T. Fisher Automated Non-invasive Video-Microscopy of Oyster Spat Heart Rate during Acute Temperature Change: Impact of Acclimation Temperature, Frontiers in Physiology 7 (Jun 2016).https://doi.org/10.3389/fphys.2016.00236Caren E. Braby, George N. Somero Following the heart: temperature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus ), Journal of Experimental Biology 209, no.1313 (Jul 2006): 2554–2566.https://doi.org/10.1242/jeb.02259I. N. Bahmet, V. J. Berger, V. V. Halaman Heart Rate in the Blue Mussel Mytilus edulis (Bivalvia) under Salinity Change, Russian Journal of Marine Biology 31, no.55 (Sep 2005): 314–317.https://doi.org/10.1007/s11179-005-0094-6I.N. Bakhmet, V.Ja. Berger, V.V. Khalaman The effect of salinity change on the heart rate of Mytilus edulis specimens from different ecological zones, Journal of Experimental Marine Biology and Ecology 318, no.22 (May 2005): 121–126.https://doi.org/10.1016/j.jembe.2004.11.023S. Nicholson Ecophysiological aspects of cardiac activity in the subtropical mussel Perna viridis (L.) (Bivalvia: Mytilidae), Journal of Experimental Marine Biology and Ecology 267, no.22 (Jan 2002): 207–222.https://doi.org/10.1016/S0022-0981(01)00362-8James B. Polhill, Ronald V. Dimock Effects of temperature and pO2 on the heart rate of juvenile and adult freshwater mussels (Bivalvia: Unionidae), Comparative Biochemistry and Physiology Part A: Physiology 114, no.22 (Jun 1996): 135–141.https://doi.org/10.1016/0300-9629(95)02105-1H.B. Akberali, E.R. Trueman Effects of Environmental Stress on Marine Bivalve Molluscs, (Jan 1985): 101–198.https://doi.org/10.1016/S0065-2881(08)60051-6JEFFREY S. LEVINTON THE LATITUDINAL COMPENSATION HYPOTHESIS: GROWTH DATA AND A MODEL OF LATITUDINAL GROWTH DIFFERENTIATION BASED UPON ENERGY BUDGETS. I. INTERSPECIFIC COMPARISON OF OPHRYOTROCHA (POLYCHAETA: DORVILLEIDAE), The Biological Bulletin 165, no.33 (Sep 2016): 686–698.https://doi.org/10.2307/1541471R.C. Newell, G.M. Branch The Influence of Temperature on the Maintenance of Metabolic Energy Balance in Marine Invertebrates, (Jan 1980): 329–396.https://doi.org/10.1016/S0065-2881(08)60304-1C.R. Boyden, J.R. Zeldis Preliminary observations using an attached microphonic sensor to study feeding behaviour of an intertidal limpet, Estuarine and Coastal Marine Science 9, no.66 (Dec 1979): 759–769.https://doi.org/10.1016/S0302-3524(79)80009-2Gary Andersom Metabolic rate, temperature acclimation and resistance to high temperature of soft-shell clams, Mya arenaria, as affected by shore level, Comparative Biochemistry and Physiology Part A: Physiology 61, no.33 (Jan 1978): 433–438.https://doi.org/10.1016/0300-9629(78)90061-0R. C. Newell, L. H. Kofoed Adjustment of the components of energy balance in the gastropod Crepidula fornicata in response to thermal acclimation, Marine Biology 44, no.33 (Jan 1977): 275–286.https://doi.org/10.1007/BF00387708B. L. Bayne, C. J. Bayne, T. C. Carefoot, R. J. Thompson The physiological ecology of Mytilus californianus Conrad, Oecologia 22, no.33 (Jan 1976): 211–228.https://doi.org/10.1007/BF00344793R.C. NEWELL Adaptations to intertidal life, (Jan 1976): 1–82.https://doi.org/10.1016/B978-0-408-70778-7.50004-4R. L. Wallis Thermal tolerance of Mytilus edulis of Eastern Australia, Marine Biology 30, no.33 (Jan 1975): 183–191.https://doi.org/10.1007/BF00390741V.I. Pye, R.C. Newell Factors affecting thermal compensation in the oxidative metabolism of the winkle littorina littorea, Netherlands Journal of Sea Research 7 (Aug 1973): 411–420.https://doi.org/10.1016/0077-7579(73)90062-8R.C. Newell, B.L. Bayne A review on temperature and metabolic acclimation in intertidal marine invertebrates, Netherlands Journal of Sea Research 7 (Aug 1973): 421–433.https://doi.org/10.1016/0077-7579(73)90063-XJ. Widdows Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake of Mytilus edulis, Marine Biology 20, no.44 (Jun 1973): 269–276.https://doi.org/10.1007/BF00354270N. Coleman The oxygen consumption of Mytilus edulis in air, Comparative Biochemistry and Physiology Part A: Physiology 45, no.22 (Jun 1973): 393–402.https://doi.org/10.1016/0300-9629(73)90445-3Alan D. Ansell Oxygen consumption by the bivalve Donax vittatus (da Costa), Journal of Experimental Marine Biology and Ecology 11, no.33 (May 1973): 311–328.https://doi.org/10.1016/0022-0981(73)90030-0R. J. Ulbricht Effect of temperature acclimation on the metabolic rate of sea urchins, Marine Biology 19, no.44 (Apr 1973): 273–277.https://doi.org/10.1007/BF00348893Judith D Huebner The effect of body size and temperature on the respiration of Polinices duplicatus, Comparative Biochemistry and Physiology Part A: Physiology 44, no.44 (Apr 1973): 1185–1197.https://doi.org/10.1016/0300-9629(73)90258-2R. C. Newell Environmental Factors Affecting the Acclimatory Responses of Ectotherms, (Jan 1973): 151–164.https://doi.org/10.1007/978-3-642-65703-0_12 Jeffrey B. Graham Low-Temperature Acclimation and the Seasonal Temperature Sensitivity of Some Tropical Marine Fishes, Physiological Zoology 45, no.11 (Sep 2015): 1–13.https://doi.org/10.1086/physzool.45.1.30155921Winona B. Vernberg, F. John Vernberg Coastal and Open Ocean Waters, (Jan 1972): 232–300.https://doi.org/10.1007/978-3-642-65334-6_5P.F.S. Cornelius Thermal acclimation of some intertidal invertebrates, Journal of Experimental Marine Biology and Ecology 9, no.11 (Jan 1972): 43–53.https://doi.org/10.1016/0022-0981(72)90005-6N. Coleman, E.R. Trueman The effect of aerial exposure on the activity of the mussels Mytilus edulis L. and Modiolus modiolus (L.), Journal of Experimental Marine Biology and Ecology 7, no.33 (Nov 1971): 295–304.https://doi.org/10.1016/0022-0981(71)90011-6M. Ahsanullah, R.C. Newell Factors affecting the heart rate of the shore crab Carcinus maenas (L.), Comparative Biochemistry and Physiology Part A: Physiology 39, no.22 (Jun 1971): 277–287.https://doi.org/10.1016/0300-9629(71)90084-3Thomas W. Moon, A.W. Pritchard Metabolic adaptations in vertically-separated populations of Mytilus californianus Conrad, Journal of Experimental Marine Biology and Ecology 5, no.11 (Aug 1970): 35–46.https://doi.org/10.1016/0022-0981(70)90027-4R.C Newell, V.I Pye The influence of thermal acclimation on the relation between oxygen consumption and temperature in Littorina littorea (L.) and Mytilus edulis L., Comparative Biochemistry and Physiology 34, no.22 (May 1970): 385–397.https://doi.org/10.1016/0010-406X(70)90179-9H. Precht Der Einfluß "normaler" Temperaturen auf Lebensprozesse bei wechselwarmen Tieren unter Ausschluß der Wachstums- und Entwicklungsprozesse, Helgoländer Wissenschaftliche Meeresuntersuchungen 18, no.44 (Dec 1968): 487–548.https://doi.org/10.1007/BF01611681M.A Tribe, K Bowler Temperature dependence of "standard metabolic rate" in a poikilotherm, Comparative Biochemistry and Physiology 25, no.22 (May 1968): 427–436.https://doi.org/10.1016/0010-406X(68)90351-4P. Spencer Davies Physiological ecology of Patella . II. Effect of environmental acclimation on the metabolic rate, Journal of the Marine Biological Association of the United Kingdom 47, no.11 (May 2009): 61–74.https://doi.org/10.1017/S0025315400033567

Referência(s)
Altmetric
PlumX