Oxygen Consumption, Estivation, and Hibernation in the Kangaroo Mouse, Microdipodops pallidus

1961; University of Chicago Press; Volume: 34; Issue: 3 Linguagem: Inglês

10.1086/physzool.34.3.30152696

ISSN

1937-4267

Autores

George A. Bartholomew, Richard E. MacMillen,

Tópico(s)

Adipose Tissue and Metabolism

Resumo

Previous articleNext article No AccessOxygen Consumption, Estivation, and Hibernation in the Kangaroo Mouse, Microdipodops pallidusGeorge A. Bartholomew and Richard E. MacMillenGeorge A. Bartholomew and Richard E. MacMillenPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 34, Number 3Jul., 1961 Article DOIhttps://doi.org/10.1086/physzool.34.3.30152696 Views: 12Total views on this site Citations: 49Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1961 University of Chicago PressPDF download Crossref reports the following articles citing this article:Justin G. Boyles, Joseph S. Johnson, Anna Blomberg, Thomas M. Lilley Optimal hibernation theory, Mammal Review 50, no.11 (Dec 2019): 91–100.https://doi.org/10.1111/mam.12181Catherine G. Haase, Nathan W. Fuller, C. Reed Hranac, David T.S. Hayman, Sarah H. Olson, Raina K. Plowright, Liam P. McGuire Bats are not squirrels: Revisiting the cost of cooling in hibernating mammals, Journal of Thermal Biology 81 (Apr 2019): 185–193.https://doi.org/10.1016/j.jtherbio.2019.01.013Michel Genoud, Karin Isler, Robert D. Martin Comparative analyses of basal rate of metabolism in mammals: data selection does matter, Biological Reviews 93, no.11 (Jul 2017): 404–438.https://doi.org/10.1111/brv.12350Imran Khaliq, Katrin Böhning-Gaese, Roland Prinzinger, Markus Pfenninger, Christian Hof The influence of thermal tolerances on geographical ranges of endotherms, Global Ecology and Biogeography 26, no.66 (Mar 2017): 650–668.https://doi.org/10.1111/geb.12575Thomas Ruf, Fritz Geiser Daily torpor and hibernation in birds and mammals, Biological Reviews 90, no.33 (Aug 2014): 891–926.https://doi.org/10.1111/brv.12137Justine M. Barker, Christine E. Cooper, Philip C. Withers, Ariovaldo P. Cruz-Neto Thermoregulation by an Australian murine rodent, the ash-grey mouse (Pseudomys albocinereus), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 163, no.3-43-4 (Nov 2012): 336–342.https://doi.org/10.1016/j.cbpa.2012.07.011B. G. Lovegrove The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum, Journal of Comparative Physiology B 173, no.22 (Feb 2003): 87–112.https://doi.org/10.1007/s00360-002-0309-5 Craig R. White The Influence of Foraging Mode and Arid Adaptation on the Basal Metabolic Rates of Burrowing Mammals C. R. White, Physiological and Biochemical Zoology 76, no.11 (Jul 2015): 122–134.https://doi.org/10.1086/367940Barry G. Lovegrove Daily Heterothermy in Mammals: Coping with Unpredictable Environments, (Jan 2000): 29–40.https://doi.org/10.1007/978-3-662-04162-8_3 Seasonal Changes in Body Mass and Use of Torpor in a Migratory Hummingbird, The Auk 110, no.44 (Oct 1993): 787–797.https://doi.org/10.2307/4088634Graham N. Stone, Andy Purvis Warm-up rates during arousal from torpor in heterothermic mammals: physiological correlates and a comparison with heterothermic insects, Journal of Comparative Physiology B 162, no.33 (Apr 1992): 284–295.https://doi.org/10.1007/BF00357536R�diger Paul, Till Fincke, Bernt Linzen Book lung function in arachnids, Journal of Comparative Physiology B 159, no.44 (Jan 1989): 409–418.https://doi.org/10.1007/BF00692413 Brian K. McNab Complications Inherent in Scaling the Basal Rate of Metabolism in Mammals, The Quarterly Review of Biology 63, no.11 (Oct 2015): 25–54.https://doi.org/10.1086/415715 Steven D. Thompson Subspecific Differences in Metabolism, Thermoregulation, and Torpor in the Western Harvest Mouse Reithrodontomys megalotis, Physiological Zoology 58, no.44 (Sep 2015): 430–444.https://doi.org/10.1086/physzool.58.4.30156018 David S. Hinds , and Richard E. MacMillen Scaling of Energy Metabolism and Evaporative Water Loss in Heteromyid Rodents, Physiological Zoology 58, no.33 (Sep 2015): 282–298.https://doi.org/10.1086/physzool.58.3.30155999 Rochelle Buffenstein The Effect of Starvation, Food Restriction, and Water Deprivation on Thermoregulation and Average Daily Metabolic Rates in Gerbillus pusillus, Physiological Zoology 58, no.33 (Sep 2015): 320–328.https://doi.org/10.1086/physzool.58.3.30156003Virginia Hayssen, Robert C Lacy Basal metabolic rates in mammals: Taxonomic differences in the allometry of BMR and body mass, Comparative Biochemistry and Physiology Part A: Physiology 81, no.44 (Jan 1985): 741–754.https://doi.org/10.1016/0300-9629(85)90904-1Rochelle Buffenstein, Jennifer U. M. Jarvis Thermoregulation and metabolism in the smallest African gerbil, Gerbillus pusillus, Journal of Zoology 205, no.11 (Aug 2009): 107–121.https://doi.org/10.1111/j.1469-7998.1985.tb05616.xS.P. Goyal, P.K. Ghosh Body weight exponents of metabolic rate and minimal thermal conductance in burrowing desert rodents, Journal of Arid Environments 6, no.11 (Mar 1983): 43–52.https://doi.org/10.1016/S0140-1963(18)31431-9CHARLES P. LYMAN, JOHN S. WILLIS, ANDRÉ MALAN, LAWRENCE C.H. WANG Who Is Who among the Hibernators, (Jan 1982): 12–36.https://doi.org/10.1016/B978-0-12-460420-9.50006-4S.Robert Bradley, Daniel R Deavers A re-examination of the relationship between thermal conductance and body weight in mammals, Comparative Biochemistry and Physiology Part A: Physiology 65, no.44 (Jan 1980): 465–476.https://doi.org/10.1016/0300-9629(80)90060-2Joseph Scelza, Jack Knoll The effects of acclimatization on body weight and oxygen consumption in Dipodomys panamintinus, Comparative Biochemistry and Physiology Part A: Physiology 65, no.11 (Jan 1980): 77–84.https://doi.org/10.1016/0300-9629(80)90386-2Brian K McNab Climatic adaptation in the energetics of heteromyid rodents, Comparative Biochemistry and Physiology Part A: Physiology 62, no.44 (Jan 1979): 813–820.https://doi.org/10.1016/0300-9629(79)90008-2Andrew J. Lechner The scaling of maximal oxygen consumption and pulmonary dimensions in small mammals, Respiration Physiology 34, no.11 (Jul 1978): 29–44.https://doi.org/10.1016/0034-5687(78)90047-6Jack W. Hudson SHALLOW, DAILY TORPOR: A THERMOREGULATORY ADAPTATION, (Jan 1978): 67–108.https://doi.org/10.1016/B978-0-12-734550-5.50008-9Bruce A. Wunder A model for estimating metabolic rate of active or resting mammals, Journal of Theoretical Biology 49, no.22 (Feb 1975): 345–354.https://doi.org/10.1016/0022-5193(75)90177-0M. L. Rosenzweig, Barbara Smigel, A. Kraft Patterns of Food, Space and Diversity, (Jan 1975): 241–268.https://doi.org/10.1007/978-94-010-1944-6_12Bruce A. Wunder A model for estimating metabolic rate of active or resting mammals, Journal of Theoretical Biology 49, no.11 (Jan 1975): 345–354.https://doi.org/10.1016/S0022-5193(75)80039-7Peter Scholl Temperaturregulation beim madegassischen IgeltanrekEchinops telfairi (Martin, 1838), Journal of Comparative Physiology 89, no.22 (Jan 1974): 175–195.https://doi.org/10.1007/BF00694790 B. G. Collins , and S. D. Bradshaw Studies on the Metabolism, Thermoregulation, and Evaporative Water Losses of Two Species of Australian Rats, Rattus villosissimus and Rattus rattus, Physiological Zoology 46, no.11 (Sep 2015): 1–21.https://doi.org/10.1086/physzool.46.1.30152512J.W. HUDSON TORPIDITY IN MAMMALS, (Jan 1973): 97–165.https://doi.org/10.1016/B978-0-12-747603-2.50009-6Robert K. Mullen Energy metabolism and body water turnover rates of two species of free-living kangaroo rats, Dipodomys merriami and Dipodomys microps, Comparative Biochemistry and Physiology Part A: Physiology 39, no.33 (Jul 1971): 379–390.https://doi.org/10.1016/0300-9629(71)90302-1 Lawrence Chia-Huang Wang, Jack W. Hudson Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus, Comparative Biochemistry and Physiology Part A: Physiology 38, no.11 (Jan 1971): 59–90.https://doi.org/10.1016/0300-9629(71)90098-3J.S. Hart RODENTS, (Jan 1971): 1–149.https://doi.org/10.1016/B978-0-12-747602-5.50007-1Richard E MacMillen, Anthony K Lee Energy metabolism and pulmocutaneous water loss of Australian hopping mice, Comparative Biochemistry and Physiology 35, no.22 (Jul 1970): 355–369.https://doi.org/10.1016/0010-406X(70)90601-8Bruce A Wunder Temperature regulation and the effects of water restriction on Merriams's chipmunk, Eutamias merriami, Comparative Biochemistry and Physiology 33, no.22 (Mar 1970): 385–403.https://doi.org/10.1016/0010-406X(70)90357-9J Emil Morhardt Body temperatures of white-footed mice (Peromyscus sp.) during daily torpor, Comparative Biochemistry and Physiology 33, no.22 (Mar 1970): 423–439.https://doi.org/10.1016/0010-406X(70)90359-2Lynda White, Howard Haines, Thomas Adams Cardiac output related to body weight in small mammals, Comparative Biochemistry and Physiology 27, no.22 (Nov 1968): 559–565.https://doi.org/10.1016/0010-406X(68)90252-1George A. Bartholomew, William R. Dawson TEMPERATURE REGULATION IN DESERT MAMMALS, (Jan 1968): 395–421.https://doi.org/10.1016/B978-1-4831-9868-2.50016-5Lloyd G. Ingles Some Mammalian Adaptations to Deserts, The American Biology Teacher 29, no.88 (Nov 1967): 646–655.https://doi.org/10.2307/4441860Clyde F. Herreid, Brina Kessel Thermal conductance in birds and mammals, Comparative Biochemistry and Physiology 21, no.22 (May 1967): 405–414.https://doi.org/10.1016/0010-406X(67)90802-XPhilip Leitner, John E. Nelson Body temperature, oxygen consumption and heart rate in the Australian false vampire bat, Macroderma gigas, Comparative Biochemistry and Physiology 21, no.11 (Apr 1967): 65–74.https://doi.org/10.1016/0010-406X(67)90115-6Knut Schmidt-Nielsen, T. J. Dawson, E. C. Crawford Temperature regulation in the echidna (Tachyglossus aculeatus), Journal of Cellular Physiology 67, no.11 (Feb 1966): 63–71.https://doi.org/10.1002/jcp.1040670108Richard E Macmillen Aestivation in the cactus mouse, Peromyscus eremicus, Comparative Biochemistry and Physiology 16, no.22 (Oct 1965): 227–248.https://doi.org/10.1016/0010-406X(65)90062-9Vance A. Tucker Oxygen consumption, thermal conductance, and torpor in the California pocket mousePerognathus californicus, Journal of Cellular and Comparative Physiology 65, no.33 (Jun 1965): 393–403.https://doi.org/10.1002/jcp.1030650313J. S. Hayward METABOLIC RATE AND ITS TEMPERATURE-ADAPTIVE SIGNIFICANCE IN SIX GEOGRAPHIC RACES OF PEROMYSCUS, Canadian Journal of Zoology 43, no.22 (Mar 1965): 309–323.https://doi.org/10.1139/z65-029RAYMOND J. HOCK The Care and Use of Hibernating Mammals, (Jan 1965): 273–331.https://doi.org/10.1016/B978-1-4832-3221-8.50013-4 Robert C. Lasiewski Oxygen Consumption of Torpid, Resting, Active, and Flying Hummingbirds, Physiological Zoology 36, no.22 (Sep 2015): 122–140.https://doi.org/10.1086/physzool.36.2.30155436Tom J. Cade Water Economy of the Budgerygah, The Auk 79, no.33 (Jul 1962): 345–364.https://doi.org/10.2307/4082821

Referência(s)
Altmetric
PlumX