Artigo Acesso aberto Revisado por pares

Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer

2016; Nature Portfolio; Volume: 22; Issue: 4 Linguagem: Inglês

10.1038/nm.4055

ISSN

1546-170X

Autores

Roman Camarda, Alicia Y. Zhou, Rebecca A. Kohnz, Sanjeev Balakrishnan, Céline I. Mahieu, Brittany Anderton, Henok Eyob, Shingo Kajimura, Aaron D. Tward, Gregor Krings, Daniel K. Nomura, Andrei Goga,

Tópico(s)

Metabolism, Diabetes, and Cancer

Resumo

In the triple-negative subtype of breast cancer, for which treatment options are limited, overexpression of the MYC oncoprotein is associated with increased sensitivity to growth inhibition by fatty acid oxidation inhibitors, thus pointing to a new therapeutic strategy. Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC), as compared to estrogen receptor–, progesterone receptor– or human epidermal growth factor 2 receptor–positive (RP) breast cancer1,2. We and others have shown that MYC alters metabolism during tumorigenesis3,4. However, the role of MYC in TNBC metabolism remains mostly unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for the growth of MYC-overexpressing TNBC cells and may identify new therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. We also identified a lipid metabolism gene signature in patients with TNBC that were identified from The Cancer Genome Atlas database and from multiple other clinical data sets, implicating FAO as a dysregulated pathway that is critical for TNBC cell metabolism. We found that pharmacologic inhibition of FAO catastrophically decreased energy metabolism in MYC-overexpressing TNBC cells and blocked tumor growth in a MYC-driven transgenic TNBC model and in a MYC-overexpressing TNBC patient–derived xenograft. These findings demonstrate that MYC-overexpressing TNBC shows an increased bioenergetic reliance on FAO and identify the inhibition of FAO as a potential therapeutic strategy for this subset of breast cancer.

Referência(s)