Artigo Revisado por pares

A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application

2016; Elsevier BV; Volume: 143; Linguagem: Inglês

10.1016/j.colsurfb.2016.03.027

ISSN

1873-4367

Autores

B. K. Chaudhuri, B. Mondal, Sarbajit Ray, Sourav Sarkar,

Tópico(s)

Advanced Sensor and Energy Harvesting Materials

Resumo

We have prepared biocompatible composites of 80 wt% polyvinyl alcohol (PVA)-(20 wt%) polyvinylpyrrolidone (PVP) blend with different concentrations of bioactive nanohydroxyapatite, Ca10(PO4)6(HO)2 (HAP). The composite films demonstrated maximum effective conductivity (σ ∼ 1.64 × 10−4 S/m) and effective dielectric constant (ε ∼ 290) at percolation threshold concentration (∼10 wt% HAP) at room temperature. These values of σ and ε are much higher than those of PVA, PVP or HAP. Our preliminary observation indicated excellent biocompatibility of the electrospun fibrous meshes of two of these composites with different HAP contents (8.5 and 5 wt% within percolation threshold concentration) using NIH 3T3 fibroblast cell line. Cells viability on the well characterized composite fibrous scaffolds was determined by MTT [3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay analysis. Enhancement of σ, due to HAP addition, was found to show increased biocompatibility of the fibrous scaffold. Enhanced σ value of the PVA/PVP-HAP composite provided supporting cues for the increased cell viability and biocompatibility of the composite fibrous meshes. Excellent biocompatibility these electrospun composite scaffolds made them to plausible potential candidates for tissue engineering or other biomedical applications.

Referência(s)