Prospects of Graphene as a Potential Carrier-Transport Material in Third-Generation Solar Cells
2016; Wiley; Volume: 16; Issue: 2 Linguagem: Inglês
10.1002/tcr.201500206
ISSN1527-8999
AutoresTowhid H. Chowdhury, Ashraful Islam, A. K. Mahmud Hasan, M. Asri Mat Terdi, M.L. Aruna Kumari, Surya Prakash Singh, Md. Khorshed Alam, Idriss Bedja, Mohd Hafidz Ruslan, Kamaruzzaman Sopian, Nowshad Amin, Md. Akhtaruzzaman,
Tópico(s)Semiconductor materials and interfaces
ResumoThe Chemical RecordVolume 16, Issue 2 p. 614-632 Personal Account Prospects of Graphene as a Potential Carrier-Transport Material in Third-Generation Solar Cells Towhid H. Chowdhury, Towhid H. Chowdhury Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaSearch for more papers by this authorAshraful Islam, Corresponding Author Ashraful Islam Photovoltaic Materials Unit National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 JapanE-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this authorA. K. Mahmud Hasan, A. K. Mahmud Hasan Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaSearch for more papers by this authorM. Asri Mat Terdi, M. Asri Mat Terdi Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaSearch for more papers by this authorM. Arunakumari, M. Arunakumari Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Uppal road, Tarnaka, Hyderabad, 500007 IndiaSearch for more papers by this authorSurya Prakash Singh, Corresponding Author Surya Prakash Singh Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Uppal road, Tarnaka, Hyderabad, 500007 IndiaE-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this authorMd. Khorshed Alam, Md. Khorshed Alam Department of Environmental and Energy Chemistry Faculty of Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo, 192-0015 JapanSearch for more papers by this authorIdriss M. Bedja, Idriss M. Bedja CRC, Optometry Department College of Applied Medical Sciences King Saud University, Riyadh, 11433 Saudi ArabiaSearch for more papers by this authorMohd Hafidz Ruslan, Mohd Hafidz Ruslan Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaSearch for more papers by this authorKamaruzzaman Sopian, Kamaruzzaman Sopian Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaSearch for more papers by this authorNowshad Amin, Nowshad Amin Dept. of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment The National University of Malaysia, 43600 Bangi, Selangor (Malaysia)Search for more papers by this authorMd. Akhtaruzzaman, Corresponding Author Md. Akhtaruzzaman Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaE-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this author Towhid H. Chowdhury, Towhid H. Chowdhury Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaSearch for more papers by this authorAshraful Islam, Corresponding Author Ashraful Islam Photovoltaic Materials Unit National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 JapanE-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this authorA. K. Mahmud Hasan, A. K. Mahmud Hasan Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaSearch for more papers by this authorM. Asri Mat Terdi, M. Asri Mat Terdi Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaSearch for more papers by this authorM. Arunakumari, M. Arunakumari Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Uppal road, Tarnaka, Hyderabad, 500007 IndiaSearch for more papers by this authorSurya Prakash Singh, Corresponding Author Surya Prakash Singh Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Uppal road, Tarnaka, Hyderabad, 500007 IndiaE-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this authorMd. Khorshed Alam, Md. Khorshed Alam Department of Environmental and Energy Chemistry Faculty of Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo, 192-0015 JapanSearch for more papers by this authorIdriss M. Bedja, Idriss M. Bedja CRC, Optometry Department College of Applied Medical Sciences King Saud University, Riyadh, 11433 Saudi ArabiaSearch for more papers by this authorMohd Hafidz Ruslan, Mohd Hafidz Ruslan Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaSearch for more papers by this authorKamaruzzaman Sopian, Kamaruzzaman Sopian Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaSearch for more papers by this authorNowshad Amin, Nowshad Amin Dept. of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment The National University of Malaysia, 43600 Bangi, Selangor (Malaysia)Search for more papers by this authorMd. Akhtaruzzaman, Corresponding Author Md. Akhtaruzzaman Solar Energy Research Institute (SERI) The National University of Malaysia, 43600 Bangi, Selangor, MalaysiaE-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this author First published: 27 January 2016 https://doi.org/10.1002/tcr.201500206Citations: 13Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Third-generation solar cells are understood to be the pathway to overcoming the issues and drawbacks of the existing solar cell technologies. Since the introduction of graphene in solar cells, it has been providing attractive properties for the next generation of solar cells. Currently, there are more theoretical predictions rather than practical recognitions in third-generation solar cells. Some of the potential of graphene has been explored in organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs), but it has yet to be fully comprehended in the recent third-generation inorganic–organic hybrid perovskite solar cells. In this review, the diverse role of graphene in third-generation OPVs and DSSCs will be deliberated to provide an insight on the prospects and challenges of graphene in inorganic–organic hybrid perovskite solar cells. REFERENCES 1a) G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789–1791; b) J. Hou, H.-Y. Chen, S. Zhang, G. Li, Y. Yang, J. Am. Chem. Soc. 2008, 130, 16144–16145; c) S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324–1338; d) H. Hoppe, N. S. Sariciftci, J. Mater. Res. 2004, 19, 1924–1945. 2 M. A. Green, Phys. E 2002, 14, 65–70. 3a) B. R. Saunders, M. L. Turner, Adv. Colloid Interface Sci. 2008, 138, 1–23; b) P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovoltaics 2011, 19, 894–897; c) M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. Photovoltaics 2012, 20, 12–20. 4a) R. Szweda, III-Vs Rev. 2003, 16, 53–55; b) M. A. Green, Prog. Photovoltaics 2001, 9, 123–135; c) G. Conibeer, Mater. Today 2007, 10, 42–50; d) G. F. Brown, J. Wu, Laser Photonics Rev. 2009, 3, 394–405. 5a) B. O'Regan, M. Grfitzeli, Nature 1991, 353, 737–740; b) U. Bach, D. Lupo, P. Comte, J. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 1998, 395, 583–585; c) Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, Langmuir 2003, 19, 3572–3574; d) M. Grätzel, Nature 2001, 414, 338–344. 6a) A. Nozik, Phys. E 2002, 14, 115–120; b) P. V. Kamat, J. Phys. Chem. C 2008, 112, 18737–18753; c) A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Gratzel, ACS Nano 2010, 4, 3374–3380; d) P. K. Santra, P. V. Kamat, J. Am. Chem. Soc. 2012, 134, 2508–2511. 7a) M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643–647; b) H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623–3630. 8 K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 2004, 306, 666–669. 9 S. I. Na, S. S. Kim, J. Jo, D. Y. Kim, Adv. Mater. 2008, 20, 4061–4067. 10 G. Eda, M. Chhowalla, Adv. Mater. 2010, 22, 2392–2415. 11 R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, A. Geim, Science 2008, 320, 1308. 12 S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Nat. Nanotechnol. 2010, 5, 574–578. 13 K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, K. Kim, Nature 2012, 490, 192–200. 14a) J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, L. Dai, Adv. Mater. 2012, 24, 2228–2233; b) J. Liu, Y. Xue, L. Dai, J. Phys. Chem. Lett. 2012, 3, 1928–1933. 15a) X. Wang, L. Zhi, K. Müllen, Nano Lett. 2008, 8, 323–327; b) X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 2011, 7, 1876–1902; c) Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Small 2010, 6, 307–312. 16a) T. Lin, F. Huang, J. Liang, Y. Wang, Energy Environ. Sci. 2011, 4, 862–865; b) J. Liang, H. Bi, D. Wan, F. Huang, Adv. Funct. Mater. 2012, 22, 1267–1271. 17a) S. Li, Y. Luo, W. Lv, W. Yu, S. Wu, P. Hou, Q. Yang, Q. Meng, C. Liu, H. M. Cheng, Adv. Energy Mater. 2011, 1, 486–490; b) L. Kavan, J.-H. Yum, M. Grätzel, Nano Lett. 2011, 11, 5501–5506; c) J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, I. A. Aksay, ACS Nano 2010, 4, 6203–6211; d) L. Kavan, J.-H. Yum, M. K. Nazeeruddin, M. Grätzel, ACS Nano 2011, 5, 9171–9178; e) Z. Wen, S. Cui, H. Pu, S. Mao, K. Yu, X. Feng, J. Chen, Adv. Mater. 2011, 23, 5445–5450. 18 M. L. Mueller, X. Yan, J. A. McGuire, L.-s. Li, Nano Lett. 2010, 10, 2679–2682. 19a) B. Partoens, F. Peeters, Phys. Rev. B 2006, 74, 075404; b) M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2009, 110, 132–145; c) J. C. Meyer, A. K. Geim, M. Katsnelson, K. Novoselov, T. Booth, S. Roth, Nature 2007, 446, 60–63; d) A. K. Geim, Science 2009, 324, 1530–1534. 20 T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 2006, 313, 951–953. 21 Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820–823. 22 G. Folcher, H. Cachet, M. Froment, J. Bruneaux, Thin Solid Films 1997, 301, 242–248. 23 R. Steim, F. R. Kogler, C. J. Brabec, J. Mater. Chem. 2010, 20, 2499–2512. 24 X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, R. S. Ruoff, Nano Lett. 2009, 9, 4359–4363. 25 W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Electrochem. Commun. 2008, 10, 1555–1558. 26a) C. W. Tang, Appl. Phys. Lett. 1986, 48, 183–185; b) P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693–3723. 27a) F. C. Krebs, Sol. Energy Mater. Sol. Cells 2009, 93, 394–412; b) T. Ameri, G. Dennler, C. Lungenschmied, C. J. Brabec, Energy Environ. Sci. 2009, 2, 347–363; c) W. Cai, X. Gong, Y. Cao, Sol. Energy Mater. Sol. Cells 2010, 94, 114–127. 28a) J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222–225; b) G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864–868; c) W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617–1622; d) Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, Appl. Phys. Lett. 2005, 86, 063502; e) C.-J. Ko, Y.-K. Lin, F.-C. Chen, C.-W. Chu, Appl. Phys. Lett. 2007, 90, 063509. 29 R. Service, Science 2011, 332, 293. 30 C.-F. Lin, M. Zhang, S.-W. Liu, T.-L. Chiu, J.-H. Lee, Int. J. Mol. Sci. 2011, 12, 476–505. 31 M. D. Halls, P. J. Djurovich, D. J. Giesen, A. Goldberg, J. Sommer, E. McAnally, M. E. Thompson, New J. Phys. 2013, 15, 105029. 32a) B. A. Rao, K. Yesudas, G. S. Kumar, K. Bhanuprakash, V. J. Rao, G. Sharma, S. Singh, Photochem. Photobiol. Sci. 2013, 12, 1688–1699; b) G. Wei, X. Xiao, S. Wang, J. D. Zimmerman, K. Sun, V. V. Diev, M. E. Thompson, S. R. Forrest, Nano Lett. 2011, 11, 4261–4264; c) G. Chen, H. Sasabe, Z. Wang, X. Wang, Z. Hong, J. Kido, Y. Yang, Phys. Chem. Chem. Phys. 2012, 14, 14661–14666. 33 B. Kan, Q. Zhang, M. Li, X. Wan, W. Ni, G. Long, Y. Wang, X. Yang, H. Feng, Y. Chen, J. Am. Chem. Soc. 2014, 136, 15529–15532. 34 R. Pandey, R. J. Holmes, Adv. Mater. 2010, 22, 5301–5305. 35a) F. Yang, M. Shtein, S. R. Forrest, Nat. Mater. 2004, 4, 37–41; b) K. M. Coakley, M. D. McGehee, Appl. Phys. Lett. 2003, 83, 3380–3382; c) M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, J. Kim, L. J. Guo, Appl. Phys. Lett. 2007, 90, 123113. 36 J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater. 2006, 18, 572–576. 37 Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Adv. Mater. 2011, 23, 1679–1683. 38 B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, Prog. Photovoltaics 2013, 21, 72–76. 39 A. Barbot, B. Lucas, C. Di Bin, B. Ratier, M. Aldissi, Appl. Phys. Lett. 2013, 102, 193305. 40 D. H. Wang, J. K. Kim, J. H. Seo, I. Park, B. H. Hong, J. H. Park, A. J. Heeger, Angew. Chem. Int. Ed. 2013, 52, 2874–2880. 41 Z. Hong, Z. Huang, X. Zeng, Thin Solid Films 2007, 515, 3019–3023. 42 J. You, C. C. Chen, L. Dou, S. Murase, H. S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li, Adv. Mater. 2012, 24, 5267–5272. 43 H. Faber, B. Butz, C. Dieker, E. Spiecker, M. Halik, Adv. Funct. Mater. 2013, 23, 2828–2834. 44 M. R. Alenezi, A. S. Alshammari, K. D. G. I. Jayawardena, M. J. Beliatis, S. J. Henley, S. R. P. Silva, J. Phys. Chem. C 2013, 117, 17850–17858. 45 M. J. Beliatis, K. K. Gandhi, L. J. Rozanski, R. Rhodes, L. McCafferty, M. R. Alenezi, A. S. Alshammari, C. A. Mills, K. D. G. I. Jayawardena, S. J. Henley, S. R. P. Silva, Adv. Mater. 2014, 26, 2078–2083. 46 K. D. G. I. Jayawardena, R. Rhodes, K. K. Gandhi, M. R. R. Prabhath, G. D. M. R. Dabera, M. J. Beliatis, L. J. Rozanski, S. J. Henley, S. R. P. Silva, J. Mater. Chem. A 2013, 1, 9922–9927. 47 H. Hayashi, I. V. Lightcap, M. Tsujimoto, M. Takano, T. Umeyama, P. V. Kamat, H. Imahori, J. Am. Chem. Soc. 2011, 133, 7684–7687. 48a) M. J. Beliatis, S. J. Henley, S. R. P. Silva, Opt. Lett. 2011, 36, 1362–1364; b) X. Li, W. C. Choy, L. Huo, F. Xie, W. E. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Adv. Mater. 2012, 24, 3046–3052; c) S. J. Henley, M. J. Beliatis, V. Stolojan, S. R. P. Silva, Nanoscale 2013, 5, 1054–1059. 49 S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, ACS Nano 2010, 4, 3169–3174. 50 J. Liu, M. Durstock, L. Dai, Energy Environ. Sci. 2014, 7, 1297–1306. 51 I. P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, M. C. Hersam, J. Phys. Chem. Lett. 2011, 2, 3006–3012. 52a) J. Kim, V. C. Tung, J. Huang, Adv. Energy Mater. 2011, 1, 1052–1057; b) J. Liu, G.-H. Kim, Y. Xue, J. Kim, J.-B. Baek, M. Durstock, L. Dai, Adv. Mater. 2014, 26, 786–790. 53a) S.-H. Liao, H.-J. Jhuo, Y.-S. Cheng, S.-A. Chen, Adv. Mater. 2013, 25, 4766–4771; b) L. Leonat, M. S. White, E. D. Głowacki, M. C. Scharber, T. Zillger, J. Rühling, A. Hübler, N. S. Sariciftci, J. Phys. Chem. C 2014, 118, 16813–16817. c) H. Park, S. Chang, X. Zhou, J. Kong, T. Palacios, S. Gradečak, Nano Lett. 2014, 14, 5148–5154. 54 X. Wan, G. Long, L. Huang, Y. Chen, Adv. Mater. 2011, 23, 5342–5358. 55 K. Chopra, S. Major, D. Pandya, Thin Solid Films 1983, 102, 1–46. 56 C. Punckt, F. Muckel, S. Wolff, I. A. Aksay, C. A. Chavarin, G. Bacher, W. Mertin, Appl. Phys. Lett. 2013, 102, 023114. 57 K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. K. I. Grigorieva, S. Dubonos, A. Firsov, Nature 2005, 438, 197–200. 58 Q. Zheng, W. H. Ip, X. Lin, N. Yousefi, K. K. Yeung, Z. Li, J.-K. Kim, ACS Nano 2011, 5, 6039–6051. 59 Y. Zhu, Z. Sun, Z. Yan, Z. Jin, J. M. Tour, ACS Nano 2011, 5, 6472–6479. 60 P. J. Cameron, L. M. Peter, J. Phys. Chem. B 2003, 107, 14394–14400. 61 S. R. Kim, M. K. Parvez, M. Chhowalla, Chem. Phys. Lett. 2009, 483, 124–127. 62 N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, ACS Nano 2010, 4, 887–894. 63 F. Xu, J. Chen, X. Wu, Y. Zhang, Y. Wang, J. Sun, H. Bi, W. Lei, Y. Ni, L. Sun, J. Phys. Chem. C 2013, 117, 8619–8627. 64 K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, T. F. Heinz, Phys. Rev. Lett. 2008, 101, 196405. 65 K. J. Williams, C. A. Nelson, X. Yan, L.-S. Li, X. Zhu, ACS Nano 2013, 7, 1388–1394. 66 I. P. Hamilton, B. Li, X. Yan, L.-s. Li, Nano Lett. 2011, 11, 1524–1529. 67 X. Fang, M. Li, K. Guo, J. Li, M. Pan, L. Bai, M. Luoshan, X. Zhao, Electrochim. Acta 2014, 137, 634–638. 68 J. A. Velten, J. Carretero-González, E. Castillo-Martínez, J. Bykova, A. Cook, R. Baughman, A. Zakhidov, J. Phys. Chem. C 2011, 115, 25125–25131. 69 J. Gun, S. A. Kulkarni, W. Xiu, S. K. Batabyal, S. Sladkevich, P. V. Prikhodchenko, V. Gutkin, O. Lev, Electrochem. Commun. 2012, 19, 108–110. 70 C. Y. Neo, J. Ouyang, J. Power Sources 2013, 222, 161–168. 71 M.-H. Jung, M. G. Kang, M.-J. Chu, J. Mater. Chem. 2012, 22, 16477–16483. 72a) M. J. Ju, J. C. Kim, H.-J. Choi, I. T. Choi, S. G. Kim, K. Lim, J. Ko, J.-J. Lee, I.-Y. Jeon, J.-B. Baek, ACS Nano 2013, 7, 5243–5250; b) C.-T. Hsieh, B.-H. Yang, Y.-F. Chen, Diamond Relat. Mater. 2012, 27, 68–75. 73 S.-Y. Jang, Y.-G. Kim, D. Y. Kim, H.-G. Kim, S. M. Jo, ACS Appl. Mater. Interfaces 2012, 4, 3500–3507. 74 D. Dodoo-Arhin, M. Fabiane, A. Bello, N. Manyala, Ind. Eng. Chem. Res. 2013, 52, 14160–14168. 75 H. Zheng, C. Y. Neo, X. Mei, J. Qiu, J. Ouyang, J. Mater. Chem. 2012, 22, 14465–14474. 76 H.-W. Liu, S.-p. Liang, T.-J. Wu, H. Chang, P.-K. Kao, C.-C. Hsu, J.-Z. Chen, P.-T. Chou, I. C. Cheng, ACS Appl. Mater. Interfaces 2014, 6, 15105–15112. 77 J. D. Roy-Mayhew, G. Boschloo, A. Hagfeldt, I. A. Aksay, ACS Appl. Mater. Interfaces 2012, 4, 2794–2800. 78 M.-Y. Yen, C.-K. Hsieh, C.-C. Teng, M.-C. Hsiao, P.-I. Liu, C.-C. M. Ma, M.-C. Tsai, C.-H. Tsai, Y.-R. Lin, T.-Y. Chou, RSC Adv. 2012, 2, 2725–2728. 79 S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, W. Choi, Adv. Funct. Mater. 2011, 21, 3729–3736. 80 Y. Li, H. Wang, Q. Feng, G. Zhou, Z.-S. Wang, ACS Appl. Mater. Interfaces 2013, 5, 8217–8224. 81 R. Wang, Q. Wu, Y. Lu, H. Liu, Y. Xia, J. Liu, D. Yang, Z. Huo, X. Yao, ACS Appl. Mater. Interfaces 2014, 6, 2118–2124. 82 M. Pumera, Chem. Soc. Rev. 2010, 39, 4146–4157. 83 G. Wang, W. Xing, S. Zhuo, Electrochim. Acta 2012, 66, 151–157. 84 B. He, Q. Tang, M. Wang, H. Chen, S. Yuan, ACS Appl. Mater. Interfaces 2014, 6, 8230–8236. 85a) V. Tjoa, J. Chua, S. S. Pramana, J. Wei, S. G. Mhaisalkar, N. Mathews, ACS Appl. Mater. Interfaces 2012, 4, 3447–3452; b) F. Gong, H. Wang, Z.-S. Wang, Phys. Chem. Chem. Phys. 2011, 13, 17676–17682; c) W. Chartarrayawadee, S. E. Moulton, D. Li, C. O. Too, G. G. Wallace, Electrochim. Acta 2012, 60, 213–223. 86a) P. Qin, S. Paek, M. I. Dar, N. Pellet, J. Ko, M. Grätzel, M. K. Nazeeruddin, J. Am. Chem. Soc. 2014, 136, 8516–8519; b) S. Lv, L. Han, J. Xiao, L. Zhu, J. Shi, H. Wei, Y. Xu, J. Dong, X. Xu, D. Li, S. Wang, Y. Luo, Q. Meng, X. Li, Chem. Commun. 2014, 50, 6931–6934; c) K. Do, H. Choi, K. Lim, H. Jo, J. W. Cho, M. K. Nazeeruddin, J. Ko, Chem. Commun. 2014, 50, 10971–10974; d) B. Xu, E. Sheibani, P. Liu, J. Zhang, H. Tian, N. Vlachopoulos, G. Boschloo, L. Kloo, A. Hagfeldt, L. Sun, Adv. Mater. 2014, 26, 6629–6634. 87 J. A. Christians, R. C. M. Fung, P. V. Kamat, J. Am. Chem. Soc. 2013, 136, 758–764. 88 Y. Liang, H. Wang, H. S. Casalongue, Z. Chen, H. Dai, Nano Res. 2010, 3, 701–705. 89a) Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, ACS Nano 2011, 5, 7426–7435; b) C. Zhu, S. Guo, P. Wang, L. Xing, Y. Fang, Y. Zhai, S. Dong, Chem. Commun. 2010, 46, 7148–7150. 90 J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, R. J. Nicholas, Nano Lett. 2013, 14, 724–730. 91 Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, S. Yang, J. Am. Chem. Soc. 2014, 136, 3760–3763. 92 Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang, W. Cui, X. Gao, Z. Liu, Y. Jin, B. Sun, Nanoscale 2014, 6, 10505–10510. 93 Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Sci. Rep. 2013, 3, 3132. Citing Literature Volume16, Issue2April 2016Pages 614-632 ReferencesRelatedInformation
Referência(s)