The Nervous Control of Cardiac Activity in the Tench (Tinca tinca) and the Goldfish (Carassius auratus)

1966; University of Chicago Press; Volume: 39; Issue: 3 Linguagem: Inglês

10.1086/physzool.39.3.30152846

ISSN

1937-4267

Autores

David Randall,

Tópico(s)

Water Quality Monitoring Technologies

Resumo

Previous articleNext article No AccessThe Nervous Control of Cardiac Activity in the Tench (Tinca tinca) and the Goldfish (Carassius auratus)D. J. RandallD. J. RandallPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 39, Number 3Jul., 1966 Article DOIhttps://doi.org/10.1086/physzool.39.3.30152846 Views: 3Total views on this site Citations: 53Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1966 University of ChicagoPDF download Crossref reports the following articles citing this article:William Joyce, Tobias Wang Regulation of heart rate in vertebrates during hypoxia: A comparative overview, Acta Physiologica 234, no.33 (Jan 2022).https://doi.org/10.1111/apha.13779Giancarlo Carli, Francesca Farabollini Autonomic correlates of defense responses, including tonic immobility (TI), (Jan 2022): 191–228.https://doi.org/10.1016/bs.pbr.2022.02.009Jonathan A. W. Stecyk, Christine S. Couturier, Denis V. Abramochkin, Diarmid Hall, Asia Arrant-Howell, Kerry L. Kubly, Shyanne Lockmann, Kyle Logue, Lenett Trueblood, Connor Swalling, Jessica Pinard, Angela Vogt Cardiophysiological responses of the air-breathing Alaska blackfish to cold acclimation and chronic hypoxic submergence at 5°C, The Journal of Experimental Biology 223, no.2222 (Oct 2020): jeb225730.https://doi.org/10.1242/jeb.225730H. E. Drost, J. Fisher, F. Randall, D. Kent, E. C. Carmack, A. P. Farrell Upper thermal limits of the hearts of Arctic cod Boreogadus saida : adults compared with larvae, Journal of Fish Biology 88, no.22 (Nov 2015): 718–726.https://doi.org/10.1111/jfb.12807E.W. Taylor INTEGRATED CONTROL AND RESPONSE OF THE CIRCULATORY SYSTEM | Central Control of Cardiorespiratory Interactions in Fish, (Jan 2011): 1178–1189.https://doi.org/10.1016/B978-0-12-374553-8.00061-7Nina K. Iversen, Aurélie Dupont-Prinet, Inge Findorf, David J. McKenzie, Tobias Wang Autonomic regulation of the heart during digestion and aerobic swimming in the European sea bass (Dicentrarchus labrax), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 156, no.44 (Aug 2010): 463–468.https://doi.org/10.1016/j.cbpa.2010.03.026E.W. Taylor, C.A.C. Leite, N. Skovgaard Autonomic control of cardiorespiratory interactions in fish, amphibians and reptiles, Brazilian Journal of Medical and Biological Research 43, no.77 (Jul 2010): 600–610.https://doi.org/10.1590/S0100-879X2010007500044Cleo Alcantara Costa Leite, E. W. Taylor, C. D. R. Guerra, L. H. Florindo, T. Belão, F. T. Rantin The role of the vagus nerve in the generation of cardiorespiratory interactions in a neotropical fish, the pacu, Piaractus mesopotamicus, Journal of Comparative Physiology A 195, no.88 (May 2009): 721–731.https://doi.org/10.1007/s00359-009-0447-2Edwin W. Taylor, Cleo A.C. Leite, Jennifer J. Levings Central control of cardiorespiratory interactions in fish, Acta Histochemica 111, no.33 (May 2009): 257–267.https://doi.org/10.1016/j.acthis.2008.11.006E. W. Taylor, C. A. C. Leite, L. H. Florindo, T. Belao, F. T. Rantin The basis of vagal efferent control of heart rate in a neotropical fish, the pacu, Piaractus mesopotamicus, Journal of Experimental Biology 212, no.77 (Mar 2009): 906–913.https://doi.org/10.1242/jeb.020529E. W. Taylor, T. Wang Control of the Heart and of Cardiorespiratory Interactions in Ectothermic Vertebrates, (Jun 2009): 285–315.https://doi.org/10.1007/978-3-540-93985-6_13M. F. Steinhausen, E. Sandblom, E. J. Eliason, C. Verhille, A. P. Farrell The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon ( Oncorhynchus nerka ), Journal of Experimental Biology 211, no.2424 (Dec 2008): 3915–3926.https://doi.org/10.1242/jeb.019281Hamish A. Campbell, Stuart Egginton The vagus nerve mediates cardio-respiratory coupling that changes with metabolic demand in a temperate nototheniod fish, Journal of Experimental Biology 210, no.1414 (Jul 2007): 2472–2480.https://doi.org/10.1242/jeb.003822Edwin Taylor, Cleo Leite, Hamish Campbell, Itsara Intanai, Tobias Wang Control of the Heart in Fish, (Dec 2011): 341–375.https://doi.org/10.1201/b11000-18 J. A. W. Stecyk and A. P. Farrell Regulation of the Cardiorespiratory System of Common Carp (Cyprinus carpio) during Severe Hypoxia at Three Seasonal Acclimation Temperatures J. A. W. Stecyk and A. P. Farrell, Physiological and Biochemical Zoology 79, no.33 (Jul 2015): 614–627.https://doi.org/10.1086/501064Jean-Claude Le Mével, Nagi Mimassi, Frédéric Lancien, Dominique Mabin, Jean-Marc Boucher, Jean-Jacques Blanc Heart rate variability, a target for the effects of angiotensin II in the brain of the trout Oncorhynchus mykiss, Brain Research 947, no.11 (Aug 2002): 34–40.https://doi.org/10.1016/S0006-8993(02)02903-7Edwin W. Taylor, David Jordan, John H. Coote Central Control of the Cardiovascular and Respiratory Systems and Their Interactions in Vertebrates, Physiological Reviews 79, no.33 (Jul 1999): 855–916.https://doi.org/10.1152/physrev.1999.79.3.855D.J. McKenzie, E.W. Taylor Cardioventilatory responses to hypoxia and NaCN in the neotenous axolotl, Respiration Physiology 106, no.33 (Dec 1996): 255–262.https://doi.org/10.1016/S0034-5687(96)00080-1D.J. McKenzie, E.W. Taylor, P. Bronzi, C.L. Bolis Aspects of cardioventilatory control in the adriatic sturgeon (Acipenser naccarii), Respiration Physiology 100, no.11 (Apr 1995): 45–53.https://doi.org/10.1016/0034-5687(94)00121-FE.W. Taylor 6 Nervous Control of the Heart and Cardiorespiratory Interactions, (Jan 1992): 343–387.https://doi.org/10.1016/S1546-5098(08)60013-8M. L. Glass, F. T. Rantin, R. M. M. Verzola, M. N. Fernandes, A. L. Kalinin Cardio-respiratory synchronization and myocardial function in hypoxic carp, Cyprinus carpio L., Journal of Fish Biology 39, no.22 (Aug 1991): 143–149.https://doi.org/10.1111/j.1095-8649.1991.tb04352.xRoger Lennard, Henry Huddart Purinergic modulation of cardiac activity in the flounder during hypoxic stress, Journal of Comparative Physiology B 159, no.11 (Jan 1989): 105–113.https://doi.org/10.1007/BF00692689James M. McKim, Patricia K. Schmieder, Gerald J. Niemi, Richard W. Carlson, Tala R. Henry Use of respiratory-cardiovascular responses of rainbow trout ( Salmo gairdneri ) in identifying acute toxicity syndromes in fish: Part 2. malathion, carbaryl, acrolein and benzaldehyde, Environmental Toxicology and Chemistry 6, no.44 (Apr 1987): 313–328.https://doi.org/10.1002/etc.5620060408J M McKim, S P Bradbury, G J Niemi Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment., Environmental Health Perspectives 71 (Apr 1987): 171–186.https://doi.org/10.1289/ehp.8771171N. W. Pankhurst Artificial Maturation as a Technique for Investigating Adaptations for Migration in the European Eel, Anguilla Anguilla (L.), (Jan 1984): 143–157.https://doi.org/10.1007/978-1-4613-2763-9_10Pierre Laurent, Susanne Holmgren, Stefan Nilsson Nervous and humoral control of the fish heart: Structure and function, Comparative Biochemistry and Physiology Part A: Physiology 76, no.33 (Jan 1983): 525–542.https://doi.org/10.1016/0300-9629(83)90455-3James M. McKim, Helen M. Goeden A direct measure of the uptake efficiency of a xenobiotic chemical across the gills of brook trout (Salvelinus fontinalis) under normoxic and hypoxic conditions, Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 72, no.11 (Jan 1982): 65–74.https://doi.org/10.1016/0306-4492(82)90206-4C.M. Ballintijn Neural Control of Respiration in Fishes and Mammals, (Jan 1982): 127–140.https://doi.org/10.1016/B978-0-08-027986-2.50017-7P.R. Laming, G.E. Savage Physiological changes observed in the goldfish (Carassius auratus) during behavioral arousal and fright, Behavioral and Neural Biology 29, no.22 (Jun 1980): 255–275.https://doi.org/10.1016/S0163-1047(80)90599-3C. Daxboeck, G.F. Holeton The effect of MS-222 on the hypoxic response of rainbow trout (salmo gairdneri), Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 65, no.22 (Jan 1980): 117–121.https://doi.org/10.1016/0306-4492(80)90031-3S. Holmgren ON THE ADRENERGIC CONTROL OF THE TELEOST HEART, (Jan 1980): 165–166.https://doi.org/10.1016/B978-0-08-024939-1.50086-1S. Short, E. W. Taylor, P. J. Butler The effectiveness of oxygen transfer during normoxia and hypoxia in the dogfish (Scyliorhinus canicula L.) before and after cardiac vagotomy, Journal of comparative physiology 132, no.44 (Dec 1979): 289–295.https://doi.org/10.1007/BF00799041John S. Cameron Autonomic nervous tone and regulation of heart rate in the goldfish, Carassius auratus, Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 63, no.22 (Jan 1979): 341–349.https://doi.org/10.1016/0306-4492(79)90084-4J.W. Kiceniuk, W.R. Penrose, W.R. Squires Oil spill dispersants cause bradycardia in a marine fish, Marine Pollution Bulletin 9, no.22 (Feb 1978): 42–45.https://doi.org/10.1016/0025-326X(78)90531-3William W. Reynolds Thermal equilibration rates in relation to heartbeat and ventilatory frequencies in largemouth blackbass, Micropterus salmoides, Comparative Biochemistry and Physiology Part A: Physiology 56, no.22 (Jan 1977): 195–201.https://doi.org/10.1016/0300-9629(77)90184-0Susanne Holmgren Regulation of the Heart of a Teleost, Gadus morhua, by Autonomic Nerves and Circulating Catecholamines, Acta Physiologica Scandinavica 99, no.11 (Jan 1977): 62–74.https://doi.org/10.1111/j.1748-1716.1977.tb10353.xCharles N. Statham, John J. Lech Studies on the mechanism of potentiation of the acute toxicity of 2,4-D n-butyl ester and 2′,5-dichloro-4′-nitrosalicylanilide in rainbow trout by carbaryl, Toxicology and Applied Pharmacology 36, no.22 (May 1976): 281–296.https://doi.org/10.1016/0041-008X(76)90007-7Charles N. Statham, John J. Lech Potentiation of the acute toxicity of several pesticides and herbicides in trout by carbaryl, Toxicology and Applied Pharmacology 34, no.11 (Oct 1975): 83–87.https://doi.org/10.1016/0041-008X(75)90177-5Peter Pfuderer, A. A. Francis Phthalate esters: Heartrate depressors in the goldfish, Bulletin of Environmental Contamination and Toxicology 13, no.33 (Mar 1975): 275–279.https://doi.org/10.1007/BF01685335Daniel E Marvin, Dennis T Burton Cardiac and respiratory responses of rainbow trout, bluegills and brown bullhead catfish during rapid hypoxia and recovery under normoxic conditions, Comparative Biochemistry and Physiology Part A: Physiology 46, no.44 (Dec 1973): 755–765.https://doi.org/10.1016/0300-9629(73)90127-8K. W. Watters, L. S. Smith Respiratory dynamics of the starry flounder Platichthys stellatus in response to low oxygen and high temperature, Marine Biology 19, no.22 (Mar 1973): 133–148.https://doi.org/10.1007/BF00353584B. N. Singh, G. M. Hughes Cardiac and respiratory responses in the climbing perchAnabas testudineus, Journal of Comparative Physiology 84, no.22 (Jan 1973): 205–226.https://doi.org/10.1007/BF00697607D.J. Grove, C.R. Starr, D.R. Allard, W. Davies Adrenaline storage in the pronephros of the plaice, Pleuronectes platessa l., Comparative and General Pharmacology 3, no.1010 (Jun 1972): 205–212.https://doi.org/10.1016/0010-4035(72)90029-8P.J. Butler, E.W Taylor Response of the dogfish (Scyliorhinus canicula L.) to slowly induced and rapidly induced hypoxia, Comparative Biochemistry and Physiology Part A: Physiology 39, no.22 (Jun 1971): 307–323.https://doi.org/10.1016/0300-9629(71)90087-9D.J. Randall 4 The Circulatory System, (Jan 1970): 133–172.https://doi.org/10.1016/S1546-5098(08)60129-6D.J. Randall 7 Gas Exchange in Fish, (Jan 1970): 253–292.https://doi.org/10.1016/S1546-5098(08)60132-6G. Shelton 8 The Regulation of Breathing, (Jan 1970): 293–359.https://doi.org/10.1016/S1546-5098(08)60133-8 Arnold M. Sutterlin Effects of Exercise on Cardiac and Ventilation Frequency in Three Species of Freshwater Teleosts, Physiological Zoology 42, no.11 (Sep 2015): 36–52.https://doi.org/10.1086/physzool.42.1.30152464Daniel E Marvin, Alan G Heath Cardiac and respiratory responses to gradual hypoxia in three ecologically distinct species of fresh-water fish, Comparative Biochemistry and Physiology 27, no.11 (Oct 1968): 349–355.https://doi.org/10.1016/0010-406X(68)90777-9GEORGE W. KLONTZ, LYNWOOD S. SMITH Methods of Using Fish as Biological Research Subjects, (Jan 1968): 323–385.https://doi.org/10.1016/B978-1-4832-3222-5.50015-9D.J. Randall, E.Don Stevens The role of adrenergic receptors in cardiovascular changes associated with exercise in salmon, Comparative Biochemistry and Physiology 21, no.22 (May 1967): 415–424.https://doi.org/10.1016/0010-406X(67)90803-1 D. J. Randall , and J. C. Smith The Regulation of Cardiac Activity in Fish in a Hypoxic Environment, Physiological Zoology 40, no.22 (Sep 2015): 104–113.https://doi.org/10.1086/physzool.40.2.30152445D. J. Randall, L. S. Smith The effect of environmental factors on circulation and respiration in teleost fish, Hydrobiologia 29, no.1-21-2 (Mar 1967): 113–124.https://doi.org/10.1007/BF00142057

Referência(s)
Altmetric
PlumX