Artigo Revisado por pares

O -displays and π-divisible formal O -modules

2016; Elsevier BV; Volume: 457; Linguagem: Inglês

10.1016/j.jalgebra.2016.03.002

ISSN

1090-266X

Autores

Tobias Ahsendorf, Chuangxun Cheng, Thomas Zink,

Tópico(s)

Rings, Modules, and Algebras

Resumo

In this paper, we construct an O-display theory and prove that, under certain conditions on the base ring, the category of nilpotent O-displays and the category of π-divisible formal O-modules are equivalent. Starting with this result, we then construct a Dieudonné O-display theory and prove a similar equivalence between the category of Dieudonné O-displays and the category of π-divisible O-modules. We also show that this equivalence is compatible with duality. These results generalize the corresponding results of Zink and Lau on displays and p-divisible groups.

Referência(s)
Altmetric
PlumX