Artigo Acesso aberto Revisado por pares

Soy Protein Isolate Protects Against Ethanol-Mediated Tumor Progression in Diethylnitrosamine-Treated Male Mice

2016; American Association for Cancer Research; Volume: 9; Issue: 6 Linguagem: Inglês

10.1158/1940-6207.capr-15-0417

ISSN

1940-6207

Autores

Kelly E. Mercer, Casey Pulliam, Leah Hennings, Keith Lai, Mario A. Cleves, Ellen Jones, Richard R. Drake, Martin J. J. Ronis,

Tópico(s)

Diet and metabolism studies

Resumo

Abstract In this study, diethylnitrosamine-treated male mice were assigned to three groups: (i) a 35% high fat ethanol liquid diet (EtOH) with casein as the protein source, (ii) the same EtOH liquid diet with soy protein isolate as the sole protein source (EtOH/SPI), (iii) and a chow group. EtOH feeding continued for 16 weeks. As expected, EtOH increased the incidence and multiplicity of basophilic lesions and adenomas compared with the chow group, P < 0.05. Soy protein replacement of casein in the EtOH diet significantly reduced adenoma progression when compared with the EtOH and EtOH/SPI group (P < 0.05). Tumor reduction in the EtOH/SPI group corresponded to reduced liver injury associated with decreased hepatic Tnfα and Cd14 antigen (Cd14) expression and decreased nuclear accumulation of NF-κB1 protein compared with the EtOH group (P < 0.05). Detection of sphingolipids using high-resolution matrix-assisted laser desorption/ionization–Fourier transform ion cyclotron resonance (MALDI-FTICR) imaging mass spectrometry revealed increased accumulation of long acyl chain ceramide species, and sphingosine-1-phosphate (S1P) in the EtOH group that were significantly reduced in the EtOH/SPI group. Chronic EtOH feeding also increased mRNA expression of β-catenin transcriptional targets, including cyclin D1 (Ccnd1), matrix metallopeptidase 7 (Mmp7), and glutamine synthetase (Glns), which were reduced in the EtOH/SPI group (P < 0.05). We conclude that soy prevents tumorigenesis by reducing proinflammatory and oxidative environment resulting from EtOH-induced hepatic injury, and by reducing hepatocyte proliferation through inhibition of β-catenin signaling. These mechanisms may involve changes in sphingolipid signaling. Cancer Prev Res; 9(6); 466–75. ©2016 AACR.

Referência(s)