The Metabolism of Some Alaskan Animals in Winter and Summer
1955; University of Chicago Press; Volume: 28; Issue: 3 Linguagem: Inglês
10.1086/physzool.28.3.30159915
ISSN1937-4267
AutoresLaurence Irving, Hildur Krog, Mildred Monson,
Tópico(s)Bat Biology and Ecology Studies
ResumoNext article No AccessThe Metabolism of Some Alaskan Animals in Winter and SummerLaurence Irving, Hildur Krog, and Mildred MonsonLaurence Irving, Hildur Krog, and Mildred MonsonPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 28, Number 3Jul., 1955 Article DOIhttps://doi.org/10.1086/physzool.28.3.30159915 Views: 802Total views on this site Citations: 130Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). PDF download Crossref reports the following articles citing this article:Sandra Lai, Chloé Warret Rodrigues, Daniel Gallant, James D Roth, Dominique Berteaux, Michael Cherry Red foxes at their northern edge: competition with the Arctic fox and winter movements, Journal of Mammalogy 103, no.33 (Jan 2022): 586–597.https://doi.org/10.1093/jmammal/gyab164Allyson K. Menzies, Emily K. Studd, Jacob L. Seguin, Rachael E. Derbyshire, Dennis L. Murray, Stan Boutin, Murray M. Humphries Activity, heart rate, and energy expenditure of a cold-climate mesocarnivore, the Canada lynx ( Lynx canadensis ), Canadian Journal of Zoology 100, no.44 (Apr 2022): 261–272.https://doi.org/10.1139/cjz-2021-0142Clark M. Blatteis, Suzanne M. Schneider Thermal Physiology in the USA: A 100-Year History of the Science and Its Scientists (1880–1980), (Sep 2022): 239–355.https://doi.org/10.1007/978-1-0716-2362-6_5Andrey Bushuev, Ekaterina Zubkova, Oleg Tolstenkov, Anvar Kerimov Basal metabolic rate in free‐ranging tropical birds lacks long‐term repeatability and is influenced by ambient temperature, Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 335, no.88 (Aug 2021): 668–677.https://doi.org/10.1002/jez.2532Ana Gabriela Jimenez The Physiological Conundrum That is the Domestic Dog, Integrative and Comparative Biology 61, no.11 (Mar 2021): 140–153.https://doi.org/10.1093/icb/icab005Daniel Gallant, Nicolas Lecomte, Dominique Berteaux, Marta Rueda Disentangling the relative influences of global drivers of change in biodiversity: A study of the twentieth‐century red fox expansion into the Canadian Arctic, Journal of Animal Ecology 89, no.22 (Sep 2019): 565–576.https://doi.org/10.1111/1365-2656.13090Götz Eichhorn, Manfred R. Enstipp, Jean‐Yves Georges, Dennis Hasselquist, Bart A. Nolet , Oikos 128, no.1010 ( 2019): 1424.https://doi.org/10.1111/oik.06468Michel Genoud, Karin Isler, Robert D. Martin Comparative analyses of basal rate of metabolism in mammals: data selection does matter, Biological Reviews 93, no.11 (Jul 2017): 404–438.https://doi.org/10.1111/brv.12350Charlotte R. Milling, Janet L. Rachlow, Mark A. Chappell, Meghan J. Camp, Timothy R. Johnson, Lisa A. Shipley, David R. Paul, Jennifer S. Forbey Seasonal temperature acclimatization in a semi-fossorial mammal and the role of burrows as thermal refuges, PeerJ 6 (Mar 2018): e4511.https://doi.org/10.7717/peerj.4511Imran Khaliq, Katrin Böhning-Gaese, Roland Prinzinger, Markus Pfenninger, Christian Hof The influence of thermal tolerances on geographical ranges of endotherms, Global Ecology and Biogeography 26, no.66 (Mar 2017): 650–668.https://doi.org/10.1111/geb.12575Kevin A. Wood, Richard A. Stillman, Dave Wheeler, Steve Groves, Catherine Hambly, John R. Speakman, Francis Daunt, Matthew T. O'Hare Go with the flow: water velocity regulates herbivore foraging decisions in river catchments, Oikos 122, no.1212 (Jun 2013): 1720–1729.https://doi.org/10.1111/j.1600-0706.2013.00592.xKevin Kuhlmann Clausen, Preben Clausen, Casper Caesar Faelled, Kim Nørgaard Mouritsen, Morten Frederiksen Energetic consequences of a major change in habitat use: endangered Brent Geese Branta bernicla hrota losing their main food resource, Ibis 154, no.44 (Aug 2012): 803–814.https://doi.org/10.1111/j.1474-919X.2012.01265.xDaniel Gallant, Brian G. Slough, Donald G. Reid, Dominique Berteaux Arctic fox versus red fox in the warming Arctic: four decades of den surveys in north Yukon, Polar Biology 35, no.99 (Apr 2012): 1421–1431.https://doi.org/10.1007/s00300-012-1181-8Craig R. White Allometric estimation of metabolic rates in animals, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 158, no.33 (Mar 2011): 346–357.https://doi.org/10.1016/j.cbpa.2010.10.004Erik A. Beever, Chris Ray, Philip W. Mote, Jennifer L. Wilkening Testing alternative models of climate-mediated extirpations, Ecological Applications 20, no.11 (Jan 2010): 164–178.https://doi.org/10.1890/08-1011.1Wei-Hong Zheng, Jin-Song Liu, Xue-Hua Jiang, Yuan-Yuan Fang, Guo-Kai Zhang Seasonal variation on metabolism and thermoregulation in Chinese bulbul, Journal of Thermal Biology 33, no.66 (Aug 2008): 315–319.https://doi.org/10.1016/j.jtherbio.2008.03.003Andrew E. McKechnie Phenotypic flexibility in basal metabolic rate and the changing view of avian physiological diversity: a review, Journal of Comparative Physiology B 178, no.33 (Oct 2007): 235–247.https://doi.org/10.1007/s00360-007-0218-8Atanas Todorov Atanasov The linear allometric relationship between total metabolic energy per life span and body mass of mammals, Biosystems 90, no.11 (Jul 2007): 224–233.https://doi.org/10.1016/j.biosystems.2006.08.006Pall Hersteinsson, Gudmundur Georgsson, Stefán Adalsteinsson, Eggert Gunnarsson The naked fox: hypotrichosis in arctic foxes (Alopex lagopus), Polar Biology 30, no.88 (Feb 2007): 1047–1058.https://doi.org/10.1007/s00300-007-0264-4Vincent Careau, Julie Morand-Ferron, Don Thomas Basal Metabolic Rate of Canidae from Hot Deserts to Cold Arctic Climates, Journal of Mammalogy 88, no.22 (Apr 2007): 394–400.https://doi.org/10.1644/06-MAMM-A-111R1.1 William R. Dawson Laurence Irving: An Appreciation W. R. Dawson, Physiological and Biochemical Zoology 80, no.11 (Jul 2015): 9–24.https://doi.org/10.1086/510320Michael R. Miller, John McA. Eadie The Allometric Relationship between Resting Metabolic Rate and Body Mass in Wild Waterfowl (Anatidae) and an Application to Estimation of Winter Habitat Requirements, The Condor 108, no.11 (Feb 2006): 166–177.https://doi.org/10.1093/condor/108.1.166 Agustí Muñoz‐Garcia and Joseph B. Williams Basal Metabolic Rate in Carnivores Is Associated with Diet after Controlling for Phylogeny A. Muñoz‐Garcia and J. B. Williams, Physiological and Biochemical Zoology 78, no.66 (Jul 2015): 1039–1056.https://doi.org/10.1086/432852 Andrew E. McKechnie and Blair O. Wolf The Allometry of Avian Basal Metabolic Rate: Good Predictions Need Good Data A. E. McKechnie and B. O. Wolf, Physiological and Biochemical Zoology 77, no.33 (Jul 2015): 502–521.https://doi.org/10.1086/383511F. Shibata, T. Kawamichi, K. Nishibayashi Daily Rest-Site Selection and Use by the Japanese Dormouse, Journal of Mammalogy 85, no.11 (Feb 2004): 30–37.https://doi.org/10.1644/BPR-007B. K. McNab Sample size and the estimation of physiological parameters in the field, Functional Ecology 17, no.11 (Feb 2003): 82–86.https://doi.org/10.1046/j.1365-2435.2003.00706.x Joseph B. Williams , Danny Lenain , Stephane Ostrowski , B. I. Tieleman , and Philip J. Seddon Energy Expenditure and Water Flux of Rüppell's Foxes in Saudi Arabia J. B. Williams, D. Lenain, S. Ostrowski, B. I. Tieleman, and P. J. Seddon, Physiological and Biochemical Zoology 75, no.55 (Jul 2015): 479–488.https://doi.org/10.1086/344490Joseph F. Merritt, David A. Zegers, Lynda R. Rose SEASONAL THERMOGENESIS OF SOUTHERN FLYING SQUIRRELS ( GLAUCOMYS VOLANS ), Journal of Mammalogy 82, no.11 (Feb 2001): 51–64.https://doi.org/10.1644/1545-1542(2001)082 2.0.CO;2 Laura A. Felicetti , Lisa A. Shipley , Gary W. Witmer , and Charles T. Robbins Digestibility, Nitrogen Excretion, and Mean Retention Time by North American Porcupines (Erethizon dorsatum) Consuming Natural Forages L. A. Felicetti, L. A. Shipley, G. W. Witmer, and C. T. Robbins, Physiological and Biochemical Zoology 73, no.66 (Jul 2015): 772–780.https://doi.org/10.1086/318094F. Fournier, D. W. Thomas, T. Garland A test of two hypotheses explaining the seasonality of reproduction in temperate mammals, Functional Ecology 13, no.44 (Mar 2002): 523–529.https://doi.org/10.1046/j.1365-2435.1999.00342.xFrançois Fournier, Donald W Thomas Thermoregulation and repeatability of oxygen-consumption measurements in winter- acclimatized North American porcupines ( Erethizondorsatum ), Canadian Journal of Zoology 77, no.22 (Aug 1999): 194–202.https://doi.org/10.1139/z98-200J.R. Pappenheimer Scaling of dimensions of small intestines in non-ruminant eutherian mammals and its significance for absorptive mechanisms, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 121, no.11 (Sep 1998): 45–58.https://doi.org/10.1016/S1095-6433(98)10100-9Martin Stock, Frank Hofeditz Grenzen der Kompensation: Energiebudgets von Ringelgänsen (Branta b. bernicla) — die Wirkung von Störreizen, Journal für Ornithologie 138, no.44 (Oct 1997): 387–411.https://doi.org/10.1007/BF01651377Karen E DeMatteo, Henry J Harlow Thermoregulatory Responses of the North American Porcupine (Erethizon dorsatum bruneri) to Decreasing Ambient Temperature and Increasing Wind Speed, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 116, no.33 (Mar 1997): 339–346.https://doi.org/10.1016/S0305-0491(96)00256-8M. S. Vinogradova, V. Schmid, E. I. Ryabchikova Morphology of the fundic glands of the American porcupine, Bulletin of Experimental Biology and Medicine 123, no.22 (Feb 1997): 199–203.https://doi.org/10.1007/BF02766451Conrad Vispo, Ian D. Hume The digestive tract and digestive function in the North American porcupine and beaver, Canadian Journal of Zoology 73, no.55 (May 1995): 967–974.https://doi.org/10.1139/z95-113Jan Woollhead Birds in the trophic web of Lake Esrom, Denmark, Hydrobiologia 279-280, no.11 (Apr 1994): 29–38.https://doi.org/10.1007/BF00027838Jan Woollhead Birds in the trophic web of Lake Esrom, Denmark, (Jan 1994): 29–38.https://doi.org/10.1007/978-94-011-1128-7_3John J.K Lir, James E Heath Metabolic rate and evaporative water loss at different ambient temperatures in two species of fox: The red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus), Comparative Biochemistry and Physiology Part A: Physiology 101, no.44 (Apr 1992): 705–707.https://doi.org/10.1016/0300-9629(92)90347-SWilliam R. Dawson, Richard L. Marsh Metabolic Acclimatization to Cold and Season in Birds, (Jan 1989): 83–94.https://doi.org/10.1007/978-1-4757-0031-2_9Brian K. McNab Basal Rate of Metabolism, Body Size, and Food Habits in the Order Carnivora, (Jan 1989): 335–354.https://doi.org/10.1007/978-1-4757-4716-4_13R. L. Marsh, W. R. Dawson Avian Adjustments to Cold, (Jan 1989): 205–253.https://doi.org/10.1007/978-3-642-74078-7_6D. D. Feist, R. G. White Terrestrial Mammals in Cold, (Jan 1989): 327–360.https://doi.org/10.1007/978-3-642-74078-7_9 Brian K. McNab Complications Inherent in Scaling the Basal Rate of Metabolism in Mammals, The Quarterly Review of Biology 63, no.11 (Oct 2015): 25–54.https://doi.org/10.1086/415715D. Byman, D. B. Hay, G. S. Bakken Energetic costs of the winter arboreal microclimate: The gray squirrel in a tree, International Journal of Biometeorology 32, no.22 (Jan 1988): 112–122.https://doi.org/10.1007/BF01044904G Viscor, J.F Fuster Relationships between morphological parameters in birds with different flying habits, Comparative Biochemistry and Physiology Part A: Physiology 87, no.22 (Jan 1987): 231–249.https://doi.org/10.1016/0300-9629(87)90118-6Pawel Koteja On the relation between basal and maximum metabolic rate in mammals, Comparative Biochemistry and Physiology Part A: Physiology 87, no.11 (Jan 1987): 205–208.https://doi.org/10.1016/0300-9629(87)90447-6M.A. Khanin, O.G. Bat Optimal lower critical temperature and thermal insulation of homeotherms, Journal of Theoretical Biology 123, no.33 (Dec 1986): 251–260.https://doi.org/10.1016/S0022-5193(86)80241-7JONATHAN C. REYNOLDS Autumn-winter energetics of Holarctic tree squirrels:a review, Mammal Review 15, no.33 (Sep 1985): 137–150.https://doi.org/10.1111/j.1365-2907.1985.tb00395.xVirginia Hayssen, Robert C Lacy Basal metabolic rates in mammals: Taxonomic differences in the allometry of BMR and body mass, Comparative Biochemistry and Physiology Part A: Physiology 81, no.44 (Jan 1985): 741–754.https://doi.org/10.1016/0300-9629(85)90904-1P.E. Wheeler The loss of functional body hair in man: the influence of thermal environment, body form and bipedality, Journal of Human Evolution 14, no.11 (Jan 1985): 23–28.https://doi.org/10.1016/S0047-2484(85)80091-9Hervé Barré Metabolic and insulative changes in winter- and summer-acclimatized King Penguin chicks, Journal of Comparative Physiology B 154, no.33 (Apr 1984): 317–324.https://doi.org/10.1007/BF02464413Hannu Korhonen, Mikko Harri Seasonal changes in thermoregulation of the raccoon dog (Nyctereutes procyonoides Gray 1834), Comparative Biochemistry and Physiology Part A: Physiology 77, no.22 (Jan 1984): 213–219.https://doi.org/10.1016/0300-9629(84)90049-5Robert D. Williamson Identification of urban habitat components which affect eastern gray squirrel abundance, Urban Ecology 7, no.44 (Nov 1983): 345–356.https://doi.org/10.1016/0304-4009(83)90020-7 Willard W. Hennemann III , Steven D. Thompson , and Michael J. Konecny Metabolism of Crab-Eating Foxes, Cerdocyon thous: Ecological Influences on the Energetics of Canids, Physiological Zoology 56, no.33 (Sep 2015): 319–324.https://doi.org/10.1086/physzool.56.3.30152596Willard W. Hennemann Relationship among body mass, metabolic rate and the intrinsic rate of natural increase in mammals, Oecologia 56, no.11 (Jan 1983): 104–108.https://doi.org/10.1007/BF00378224Ronald W. Pauls Energetics of the red squirrel: A laboratory study of the effects of temperature, seasonal acclimatization, use of the nest and exercise, Journal of Thermal Biology 6, no.22 (Apr 1981): 79–86.https://doi.org/10.1016/0306-4565(81)90057-7Timothy M. Casey Nest insulation: Energy savings to brown lemmings using a winter nest, Oecologia 50, no.22 (Jan 1981): 199–204.https://doi.org/10.1007/BF00348038 Brian K. McNab Food Habits, Energetics, and the Population Biology of Mammals, The American Naturalist 116, no.11 (Oct 2015): 106–124.https://doi.org/10.1086/283614Claus Bech Body temperature, metabolic rate, and insulation in winter and summer acclimatized mute swans (Cygnus olor), Journal of Comparative Physiology ? B 136, no.11 (Jan 1980): 61–66.https://doi.org/10.1007/BF00688623S.Robert Bradley, Daniel R Deavers A re-examination of the relationship between thermal conductance and body weight in mammals, Comparative Biochemistry and Physiology Part A: Physiology 65, no.44 (Jan 1980): 465–476.https://doi.org/10.1016/0300-9629(80)90060-2Joseph Scelza, Jack Knoll The effects of acclimatization on body weight and oxygen consumption in Dipodomys panamintinus, Comparative Biochemistry and Physiology Part A: Physiology 65, no.11 (Jan 1980): 77–84.https://doi.org/10.1016/0300-9629(80)90386-2A. Arieli, A. Meltzer, A. Berman Seasonal acclimatisation in the hen, British Poultry Science 20, no.66 (Nov 2007): 505–513.https://doi.org/10.1080/00071667908416614Wesley W. Weathers Climatic adaptation in Svian standard metabolic rate, Oecologia 42, no.11 (Jan 1979): 81–89.https://doi.org/10.1007/BF00347620Ursel Noll-Banholzer Body temperature, oxygen consumption, evaporative water loss and heart rate in the fennec, Comparative Biochemistry and Physiology Part A: Physiology 62, no.33 (Jan 1979): 585–592.https://doi.org/10.1016/0300-9629(79)90108-7Timothy M Casey, Philip C Withers, Kathleen K Casey Metabolic and respiratory responses of arctic mammals to ambient temprature during the summer, Comparative Biochemistry and Physiology Part A: Physiology 64, no.33 (Jan 1979): 331–341.https://doi.org/10.1016/0300-9629(79)90452-3H. H. KOLB Variation in the size of foxes in Scotland, Biological Journal of the Linnean Society 10, no.33 (Jan 2008): 291–304.https://doi.org/10.1111/j.1095-8312.1978.tb00017.x William R. Dawson , and Albert F. Bennett Energy Metabolism and Thermoregulation of the Spectacled Hare Wallaby (Lagorchestes conspicillatus), Physiological Zoology 51, no.22 (Sep 2015): 114–130.https://doi.org/10.1086/physzool.51.2.30157860Wesley W. Weathers, Donald F. Caccamise Seasonal acclimatization to temperature in monk parakeets, Oecologia 35, no.22 (Jan 1978): 173–183.https://doi.org/10.1007/BF00344730Mark W Schwan, Darrell D Williams Temperature regulation in the common raven of interior Alaska, Comparative Biochemistry and Physiology Part A: Physiology 60, no.11 (Jan 1978): 31–36.https://doi.org/10.1016/0300-9629(78)90033-6J.Homer Ferguson, Terry D Schultz Lipid turnover in the tundra wolf Canis lupus tundrarum, Comparative Biochemistry and Physiology Part A: Physiology 61, no.33 (Jan 1978): 439–440.https://doi.org/10.1016/0300-9629(78)90062-2Jochen Hölzinger Der Einfluß von Sulfitzellstoff-Abwässern und Schwermetallen auf das Ökosystem des Öpfinger Donaustausees, Journal of Ornithology 118, no.44 (Oct 1977): 329–415.https://doi.org/10.1007/BF01643123Ian R. Swingland The social and spatial organization of winter communal roosting in Rooks (Corvus fmgilegus), Journal of Zoology 182, no.44 (Aug 2009): 509–528.https://doi.org/10.1111/j.1469-7998.1977.tb04167.xLarry N Rfinking, Delbert L Kilgore, Eleanor S Fairbanks, James D Hamilton Temperature regulation in normothermic black-tailed prairie dogs, Cynomys ludovicianus, Comparative Biochemistry and Physiology Part A: Physiology 57, no.11 (Jan 1977): 161–165.https://doi.org/10.1016/0300-9629(77)90368-1William Galster, Peter Morrison Plasma lipid levels and lipoprotein ratios in ten rodent species, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 58, no.11 (Jan 1977): 39–42.https://doi.org/10.1016/0305-0491(77)90124-9 David E. Davis Hibernation and Circannual Rhythms of Food Consumption in Marmots and Ground Squirrels, The Quarterly Review of Biology 51, no.44 (Oct 2015): 477–514.https://doi.org/10.1086/409594G. C. Whittow Regulation of Body Temperature, (Jan 1976): 146–173.https://doi.org/10.1007/978-3-642-96274-5_7William R. Dawson, Cynthia Carey Seasonal acclimatization to temperature in cardueline finches, Journal of Comparative Physiology ? B 112, no.33 (Jan 1976): 317–333.https://doi.org/10.1007/BF00692302Eugene B. Bakko A field water balance study of gray squirrels (Sciurus carolinensis) and red squirrels (Tamiasciurus hudsonicus), Comparative Biochemistry and Physiology Part A: Physiology 51, no.44 (Aug 1975): 759–768.https://doi.org/10.1016/0300-9629(75)90053-5Teresa M. Delane, John S. Hayward Acclimatization to temperature in pheasants (Phasianus colchicus) and partridge (Perdix perdix), Comparative Biochemistry and Physiology Part A: Physiology 51, no.33 (Jul 1975): 531–536.https://doi.org/10.1016/0300-9629(75)90337-0Michael S. Hudecki, C.A. Privitera Lipid changes in tissues from the cold-exposed, torpid and aroused pigmy mouse, Baiomys taylori, Cryobiology 12, no.33 (Jun 1975): 266–275.https://doi.org/10.1016/0011-2240(75)90025-5Bruce A. Wunder A model for estimating metabolic rate of active or resting mammals, Journal of Theoretical Biology 49, no.22 (Feb 1975): 345–354.https://doi.org/10.1016/0022-5193(75)90177-0Bruce A. Wunder A model for estimating metabolic rate of active or resting mammals, Journal of Theoretical Biology 49, no.11 (Jan 1975): 345–354.https://doi.org/10.1016/S0022-5193(75)80039-7Terry D. Shultz, J.Homer Ferguson The fatty acid composition of subcutaneous, omental and inguinal adipose tissue in the arctic fox (Alopex lagopus innuitus), Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 49, no.11 (Sep 1974): 65–69.https://doi.org/10.1016/0305-0491(74)90222-3Bruce A. Wunder, Peter R. Morrison Red squirrel metabolism during incline running, Comparative Biochemistry and Physiology Part A: Physiology 48, no.11 (May 1974): 153–161.https://doi.org/10.1016/0300-9629(74)90863-9Kirtland G. Smith, Harold H. Prince The Fasting Metabolism of Subadult Mallards Acclimatized to Low Ambient Temperatures, The Condor 75, no.33 (Oct 1973): 330–335.https://doi.org/10.2307/1366174 S. H. Clarke , and R. B. Brander Radiometric Determination of Porcupine Surface Temperature under Two Conditions of Overhead Cover, Physiological Zoology 46, no.33 (Sep 2015): 230–237.https://doi.org/10.1086/physzool.46.3.30155604Hermann Pohl, George C West Daily and seasonal variation in metabolic response to cold during rest and forced exercise in the common redpoll, Comparative Biochemistry and Physiology Part A: Physiology 45, no.33 (Jul 1973): 851–867.https://doi.org/10.1016/0300-9629(73)90088-1Terence J. Dawson "PRIMITIVE" MAMMALS, (Jan 1973): 1–46.https://doi.org/10.1016/B978-0-12-747603-2.50007-2Laurence Irving AQUATIC MAMMALS, (Jan 1973): 47–96.https://doi.org/10.1016/B978-0-12-747603-2.50008-4George C. West The effect of acclimation and acclimatization on the resting metabolic rate of the common redpoll, Comparative Biochemistry and Physiology Part A: Physiology 43, no.22 (Oct 1972): 293–310.https://doi.org/10.1016/0300-9629(72)90188-0D. P. Clarkson, J. H. Ferguson Environmental temperature versus spontaneous running?wheel activity in the red squirrel, TAMIASCIURUS HUDSONICUS, International Journal of Biometeorology 16, no.33 (Aug 1972): 269–276.https://doi.org/10.1007/BF01553738 S. Charles Kendeigh Energy Control of Size Limits in Birds, The American Naturalist 106, no.947947 (Oct 2015): 79–88.https://doi.org/10.1086/282753Laurence Irving Size and Seasonal Change in Dimensions, (Jan 1972): 163–177.https://doi.org/10.1007/978-3-642-85655-6_11Laurence Irving Metabolic Supply of Heat, (Jan 1972): 114–136.https://doi.org/10.1007/978-3-642-85655-6_9James A. Gessaman , Arctic and Alpine Research 4, no.33 ( 1972): 223.https://doi.org/10.1080/00040851.1972.12003640J. Slee Physiological factors affecting the energy cost of cold exposures, Proceedings of the Nutrition Society 30, no.33 (Feb 2007): 215–221.https://doi.org/10.1079/PNS19710043R.H. Drent, B. Stonehouse Thermoregulatory responses of the peruvian penguin, Spheniscus humboldti, Comparative Biochemistry and Physiology Part A: Physiology 40, no.33 (Nov 1971): 689–710.https://doi.org/10.1016/0300-9629(71)90254-4J.Homer Ferguson, G.Edger Folk Free fatty acid levels in several species of arctic carnivores, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 40, no.11 (Sep 1971): 309–312.https://doi.org/10.1016/0305-0491(71)90087-3Michael J. Rovetto, J.Homer Ferguson Effects of acclimation temperature on brown adipose tissue in the red squirrel (Tamiasciurus hudsonicus), Comparative Biochemistry and Physiology Part A: Physiology 39, no.11 (May 1971): 39–44.https://doi.org/10.1016/0300-9629(71)90345-8Michael Aleksiuk Seasonal dynamics of brown adipose tissue function in the red squirrel (Tamiasciurus hudsonicus), Comparative Biochemistry and Physiology Part A: Physiology 38, no.44 (Apr 1971): 723–731.https://doi.org/10.1016/0300-9629(71)90213-1Hermann Pohl SEASONAL VARIATION IN METABOLIC FUNCTIONS OF BRAMBLINGS, Ibis 113, no.22 (Apr 2008): 185–193.https://doi.org/10.1111/j.1474-919X.1971.tb05143.xJ.S. Hart RODENTS, (Jan 1971): 1–149.https://doi.org/10.1016/B978-0-12-747602-5.50007-1Brian K. McNab Body Weight and the Energetics of Temperature Regulation, Journal of Experimental Biology 53, no.22 (Oct 1970): 329–348.https://doi.org/10.1242/jeb.53.2.329O. HÉROUX Pathological Consequences of Artificial Cold Acclimatization, Nature 227, no.52535253 (Jul 1970): 88–89.https://doi.org/10.1038/227088a0R Hissa, R Palokangas Thermoregulation in the titmouse (Parus major L.), Comparative Biochemistry and Physiology 33, no.44 (Apr 1970): 941–953.https://doi.org/10.1016/0010-406X(70)90042-3Terence J Dawson, M.J.S Denny, A.J Hulbert Thermal balance of the macropodid marsupial Macropus eugenii desmarest, Comparative Biochemistry and Physiology 31, no.44 (Nov 1969): 645–653.https://doi.org/10.1016/0010-406X(69)90065-6O. HEROUX Catecholamines, Corticosteroids and Thyroid Hormones in Nonshivering Thermogenesis under Different Environmental Conditions, (Jan 1969): 347–365.https://doi.org/10.1016/B978-0-08-012023-2.50020-8S. Charles Kendeigh Tolerance of Cold and Bergmann's Rule, The Auk 86, no.11 (Jan 1969): 13–25.https://doi.org/10.2307/4083537Richard E Johnson Temperature regulation in the white-tailed ptarmigan, Lagopus leucurus, Comparative Biochemistry and Physiology 24, no.33 (Mar 1968): 1003–1014.https://doi.org/10.1016/0010-406X(68)90813-XS. Gelineo The Heat Production of Goldfinches and Canaries in Summer and Winter, (Jan 1968): 102–105.https://doi.org/10.1007/978-3-642-51065-6_14Robert C. Lasiewski, Wesley W. Weathers, Marvin H. Bernstein Physiological responses of the giant hummingbird, Patagona gigas, Comparative Biochemistry and Physiology 23, no.33 (Dec 1967): 797–813.https://doi.org/10.1016/0010-406X(67)90342-8Robert C. Lasiewski, William R. Dawson A Re-Examination of the Relation between Standard Metabolic Rate and Body Weight in Birds, The Condor 69, no.11 (Jan 1967): 13–23.https://doi.org/10.2307/1366368 George C. West , and J. Sanford Hart Metabolic Responses of Evening Grosbeaks to Constant and to Fluctuating Temperatures, Physiological Zoology 39, no.22 (Sep 2015): 171–184.https://doi.org/10.1086/physzool.39.2.30152430Knut Schmidt-Nielsen, T. J. Dawson, E. C. Crawford Temperature regulation in the echidna (Tachyglossus aculeatus), Journal of Cellular Physiology 67, no.11 (Feb 1966): 63–71.https://doi.org/10.1002/jcp.1040670108RICHARD C. BIRKEBAK Heat Transfer in Biological Systems, (Jan 1966): 269–344.https://doi.org/10.1016/B978-1-4831-9978-8.50011-6 James H. Veghte , and Clyde F. Herreid Radiometric Determination of Feather Insulation and Metabolism of Arctic Birds, Physiological Zoology 38, no.33 (Sep 2015): 267–275.https://doi.org/10.1086/physzool.38.3.30152838 George C. West Shivering and Heat Production in Wild Birds, Physiological Zoology 38, no.22 (Sep 2015): 111–120.https://doi.org/10.1086/physzool.38.2.30152817J. S. Hayward METABOLIC RATE AND ITS TEMPERATURE-ADAPTIVE SIGNIFICANCE IN SIX GEOGRAPHIC RACES OF PEROMYSCUS, Canadian Journal of Zoology 43, no.22 (Mar 1965): 309–323.https://doi.org/10.1139/z65-029R. R. J. Chaffee, W. W. Mayhew, M. Drebin, Y. Cassuto STUDIES ON THERMOGENESIS IN COLD-ACCLIMATED BIRDS, Canadian Journal of Biochemistry and Physiology 41, no.1111 (Nov 1963): 2215–2220.https://doi.org/10.1139/o63-250 Robert C. Lasiewski Oxygen Consumption of Torpid, Resting, Active, and Flying Hummingbirds, Physiological Zoology 36, no.22 (Sep 2015): 122–140.https://doi.org/10.1086/physzool.36.2.30155436R. R. J. Chaffee, W. W. Mayhew, M. Drebin, Y. Cassuto STUDIES ON THERMOGENESIS IN COLD-ACCLIMATED BIRDS, Canadian Journal of Biochemistry and Physiology 41, no.11 (Jan 1963): 2215–2220.https://doi.org/10.1139/y63-250 J. S. Hart Seasonal Acclimatization in Four Species of Small Wild Birds, Physiological Zoology 35, no.33 (Sep 2015): 224–236.https://doi.org/10.1086/physzool.35.3.30152807JAMES R. KING, DONALD S. FARNER Energy Metabolism, Thermoregulation and Body Temperature, (Jan 1961): 215–288.https://doi.org/10.1016/B978-1-4832-3143-3.50014-9 Margaret Segur Misch Heat Regulation in the Northern Blue Jay, Cyanocitta Cristata Bromia Oberholser, Physiological Zoology 33, no.44 (Nov 2015): 252–259.https://doi.org/10.1086/physzool.33.4.30152668H. D. Johnson, A. C. Ragsdale The effect of rising environmental temperatures (35°–95° F.) On thyroid 131 I release rate of holstein, brown swiss and jersey heifers, The Journal of Agricultural Science 54, no.33 (Mar 2009): 421–426.https://doi.org/10.1017/S0021859600021389William R. Dawson, Harrison B. Tordoff Relation of Oxygen Consumption to Temperature in the Evening Grosbeak, The Condor 61, no.66 (Nov 1959): 388–396.https://doi.org/10.2307/1365308 William R. Dawson Relation of Oxygen Consumption and Evaporative Water Loss to Temperature in the Cardinal, Physiological Zoology 31, no.11 (Sep 2015): 37–48.https://doi.org/10.1086/physzool.31.1.30155377 Laurence Irving , Knut Schmidt-Nielsen , and Norman S. B. Abrahamsen On the Melting Points of Animal Fats in Cold Climates, Physiological Zoology 30, no.22 (Sep 2015): 93–105.https://doi.org/10.1086/physzool.30.2.30155356J. STEEN Food Intake and Oxygen Consumption in Pigeons at Low Temperatures, Acta Physiologica Scandinavica 39, no.11 (Jan 1957): 22–26.https://doi.org/10.1111/j.1748-1716.1957.tb01405.x
Referência(s)