Osmotic Regulation of Tanypus nubifer, Chironomus plumosus, and Enallagma clausum in Various Concentrations of Saline Lake Water

1969; University of Chicago Press; Volume: 42; Issue: 4 Linguagem: Inglês

10.1086/physzool.42.4.30155509

ISSN

1937-4267

Autores

Gerald J. Lauer,

Tópico(s)

Fish Ecology and Management Studies

Resumo

Previous articleNext article Osmotic Regulation of Tanypus nubifer, Chironomus plumosus, and Enallagma clausum in Various Concentrations of Saline Lake WaterGerald J. LauerGerald J. Lauer Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by Volume 42, Number 4Oct., 1969 Article DOIhttps://doi.org/10.1086/physzool.42.4.30155509 Views: 1Total views on this site Citations: 22Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1969 University of ChicagoPDF download Crossref reports the following articles citing this article:David B. Herbst, Scott W. Roberts, R. Bruce Medhurst Defining salinity limits on the survival and growth of benthic insects for the conservation management of saline Walker Lake, Nevada, USA, Journal of Insect Conservation 17, no.55 (Apr 2013): 877–883.https://doi.org/10.1007/s10841-013-9568-6Daniel W. Lob1 and Pamela Silver2 Effects of elevated salinity from road deicers on Chironomus riparius at environmentally realistic springtime temperatures, Freshwater Science 31, no.44 (Jul 2015): 1078–1087.https://doi.org/10.1899/12-095.1AndreaRoskoschNicolasHetteMichaelHupferJörgLewandowski Alteration of Chironomus plumosus ventilation activity and bioirrigation-mediated benthic fluxes by changes in temperature, oxygen concentration, and seasonal variations, Freshwater Science 31, no.22 (Jul 2015): 269–281.https://doi.org/10.1899/11-043.1Sima Jonusaite, Scott P. Kelly, Andrew Donini The physiological response of larval Chironomus riparius (Meigen) to abrupt brackish water exposure, Journal of Comparative Physiology B 181, no.33 (Nov 2010): 343–352.https://doi.org/10.1007/s00360-010-0526-2Dirk Verschuren, John Tibby, Koen Sabbe, Neil Roberts EFFECTS OF DEPTH, SALINITY, AND SUBSTRATE ON THE INVERTEBRATE COMMUNITY OF A FLUCTUATING TROPICAL LAKE, Ecology 81, no.11 (Jan 2000): 164–182.https://doi.org/10.1890/0012-9658(2000)081[0164:EODSAS]2.0.CO;2Lieven Bervoets, Rudolf Verheyen, Ronny Blust Uptake of zinc by the midge larvae Chironomus riparius at different salinities: Role of speciation, acclimation, and calcium, Environmental Toxicology and Chemistry 15, no.88 (Aug 1996): 1423–1428.https://doi.org/10.1002/etc.5620150823Lieven Bervoets, Ronny Blust, Rudolf Verheyen The uptake of cadmium by the midge larvae Chironomus riparius as a function of salinity, Aquatic Toxicology 33, no.3-43-4 (Oct 1995): 227–243.https://doi.org/10.1016/0166-445X(95)00026-ZIan R. Walker, Susan E. Wilson, John P. Smol Chironomidae (Diptera): quantitative palaeosalinity indicators for lakes of western Canada, Canadian Journal of Fisheries and Aquatic Sciences 52, no.55 (May 1995): 950–960.https://doi.org/10.1139/f95-094Terry M. Short, Jeffrey A. Black, Wesley J. Birge Ecology of a saline stream: community responses to spatial gradients of environmental conditions, Hydrobiologia 226, no.33 (Nov 1991): 167–178.https://doi.org/10.1007/BF00006858David L. Galat, Mark Coleman, Rob Robinson Experimental effects of elevated salinity on three benthic invertebrates in Pyramid Lake, Nevada, (Jan 1988): 133–144.https://doi.org/10.1007/978-94-009-3095-7_9David L. Galat, Mark Coleman, Rob Robinson Experimental effects of elevated salinity on three benthic invertebrates in Pyramid Lake, Nevada, Hydrobiologia 158, no.11 (Jan 1988): 133–144.https://doi.org/10.1007/BF00026272David B. Herbst, Timothy J. Bradley Osmoregulation in dolichopodid larvae (Hydrophorus plumbeus) from a saline lake, Journal of Insect Physiology 34, no.55 (Jan 1988): 369–372.https://doi.org/10.1016/0022-1910(88)90105-9W. T. Edmondson, Arni H. Litt Mt. St. Helens ash in lakes in the lower Grand Coulee, Washington State, SIL Proceedings, 1922-2010 22, no.11 (Dec 2017): 510–512.https://doi.org/10.1080/03680770.1983.11897336C. C. Vaughn Distribution of chironomids in the littoral zone of Lake Texoma, Oklahoma and Texas, Hydrobiologia 89, no.22 (May 1982): 177–188.https://doi.org/10.1007/BF00006170W. D. Williams 1. Inland salt lakes: An introduction, Hydrobiologia 81-82, no.11 (Jun 1981): 1–14.https://doi.org/10.1007/BF00048701W. D. Williams Inland salt lakes: An introduction, (Jan 1981): 1–14.https://doi.org/10.1007/978-94-009-8665-7_1M.C Sanguinetti Osmoregulation and ionic balance in Trichocorixa reticulata (Guerin-Meneville), Comparative Biochemistry and Physiology Part A: Physiology 65, no.44 (Jan 1980): 477–482.https://doi.org/10.1016/0300-9629(80)90061-4R.A. Crowther, H.B.N. Hynes The effect of road deicing salt on the drift of stream benthos, Environmental Pollution (1970) 14, no.22 (Oct 1977): 113–126.https://doi.org/10.1016/0013-9327(77)90103-3M.C. Geddes Studies on an Australian brine shrimp, Parartemia zietziana sayce (crustacea : Anostraca)—II. Osmotic and ionic regulation, Comparative Biochemistry and Physiology Part A: Physiology 51, no.33 (Jul 1975): 561–571.https://doi.org/10.1016/0300-9629(75)90342-4D.A. Wright Sodium regulation in the larvae of Chironomus dorsalis ( Meig .) and Camptochironomus tentans (Fabr.): the effect of salt depletion and some observations on temperature changes, Journal of Experimental Biology 62, no.11 (Feb 1975): 121–139.https://doi.org/10.1242/jeb.62.1.121R.H. Stobbart, J. Shaw SALT AND WATER BALANCE; EXCRETION, (Jan 1974): 361–446.https://doi.org/10.1016/B978-0-12-591605-9.50015-9G.G.E. Scudder, M.S. Jarial, S.K. Choy Osmotic and ionic balance in two species of Cenocorixa (Hemiptera), Journal of Insect Physiology 18, no.55 (May 1972): 883–895.https://doi.org/10.1016/0022-1910(72)90027-3

Referência(s)
Altmetric
PlumX