Respiration of Crabs in Georgia Salt Marshes and Its Relation to Their Ecology
1959; University of Chicago Press; Volume: 32; Issue: 1 Linguagem: Inglês
10.1086/physzool.32.1.30152287
ISSN1937-4267
Autores Tópico(s)Fish biology, ecology, and behavior
ResumoPrevious articleNext article No AccessRespiration of Crabs in Georgia Salt Marshes and Its Relation to Their EcologyJohn M. TealJohn M. Teal Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 32, Number 1Jan., 1959 Article DOIhttps://doi.org/10.1086/physzool.32.1.30152287 Views: 11Total views on this site Citations: 51Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1959 The University of ChicagoPDF download Crossref reports the following articles citing this article:Nanette Smith, Lars Anderson, Laura S. Fletcher, Carter K. Stancil, Blaine D. Griffen Metabolic rates in the squareback marsh crab Armases cinereum, Ecology and Evolution 12, no.1212 (Dec 2022).https://doi.org/10.1002/ece3.9665Mariana V. Capparelli, Carl L. Thurman, Paloma Gusso Choueri, Denis Moledo de Souza Abessa, Mayana Karoline Fontes, Caio Rodrigues Nobre, John Campbell McNamara Survival strategies on a semi-arid island: submersion and desiccation tolerances of fiddler crabs from the Galapagos Archipelago, Marine Biology 168, no.11 (Jan 2021).https://doi.org/10.1007/s00227-020-03807-6Mindaugas Zilius, Stefano Bonaglia, Elias Broman, Vitor Gonsalez Chiozzini, Aurelija Samuiloviene, Francisco J. A. Nascimento, Ulisse Cardini, Marco Bartoli N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont, Scientific Reports 10, no.11 (Aug 2020).https://doi.org/10.1038/s41598-020-70834-0Anthony Macchiano, Daniel A. Sasson, Noah T. Leith, Kasey D. Fowler-Finn , Frontiers in Ecology and Evolution 7 ( 2019).https://doi.org/10.3389/fevo.2019.00361RJ Brodie, B Roberts, JI Espinosa, K Heilman, SA Borgianini, JM Welch, KA Reinsel Seasonal and latitudinal variations in the energy reserves of the mud fiddler crab Uca pugnax: implications for the response to climate change, Aquatic Biology (Jan 2017).https://doi.org/10.3354/ab00683Rachel E. Michaels, Joseph C. Zieman Fiddler crab (Uca spp.) burrows have little effect on surrounding sediment oxygen concentrations, Journal of Experimental Marine Biology and Ecology 448 (Oct 2013): 104–113.https://doi.org/10.1016/j.jembe.2013.06.020Margarita Brandt, Keryn Bromberg Gedan, Erica A. Garcia Disturbance Type Affects the Distribution of Mobile Invertebrates in a High Salt Marsh Community, Northeastern Naturalist 17, no.11 (Mar 2010): 103–114.https://doi.org/10.1656/045.017.0108Sosuke Otani, Yasunori Kozuki, Ryoichi Yamanaka, Hiromitsu Sasaoka, Tetsu Ishiyama, Yoshihito Okitsu, Hajime Sakai, Yoji Fujiki The role of crabs (Macrophthalmus japonicus) burrows on organic carbon cycle in estuarine tidal flat, Japan, Estuarine, Coastal and Shelf Science 86, no.33 (Feb 2010): 434–440.https://doi.org/10.1016/j.ecss.2009.07.033Suzanne E. Hollins, Scott F. Heron, Peter V. Ridd Methods for monitoring tidal flushing in large animal burrows in tropical mangrove swamps, Estuarine, Coastal and Shelf Science 82, no.44 (May 2009): 615–620.https://doi.org/10.1016/j.ecss.2009.03.007Stelios Katsanevakis, John Xanthopoulos, Nikos Protopapas, George Verriopoulos Oxygen consumption of the semi-terrestrial crab Pachygrapsus marmoratus in relation to body mass and temperature: an information theory approach, Marine Biology 151, no.11 (Oct 2006): 343–352.https://doi.org/10.1007/s00227-006-0485-zDouglas S. Glazier Beyond the : variation in the intra- and interspecific scaling of metabolic rate in animals, Biological Reviews 80, no.0404 (Aug 2005): 611.https://doi.org/10.1017/S1464793105006834Horacio O. de la Iglesia, Enrique M. Rodríguez, Rubén E. Dezi Burrow plugging in the crab Uca uruguayensis and its synchronization with photoperiod and tides, Physiology & Behavior 55, no.55 (May 1994): 913–919.https://doi.org/10.1016/0031-9384(94)90079-5W.D. Emmerson The effect of temperature and season on the aerial oxygen consumption of Uca urvillei (H. Milne Edwards) (Decapoda: Ocypodidae), Journal of Thermal Biology 15, no.11 (Jan 1990): 41–46.https://doi.org/10.1016/0306-4565(90)90046-KF.Brandt Gutermuth, David A. Armstrong Temperature-dependent metabolic response of juvenile Dungeness crab Cancer magister Dana: ecological implications for estuarine and coastal populations, Journal of Experimental Marine Biology and Ecology 126, no.22 (Mar 1989): 135–144.https://doi.org/10.1016/0022-0981(89)90085-3Euclydes A Santos, Bernardo Baldisseroto, Adalto Blanchini, Elton P Colares, Luiz E.M Nery, Gilberto C Manzoni Respiratory mechanisms and metabolic adaptations of an intertidal crab, Chasmagnathus granulata (Dana, 1851), Comparative Biochemistry and Physiology Part A: Physiology 88, no.11 (Jan 1987): 21–25.https://doi.org/10.1016/0300-9629(87)90092-2Tristram D. Wyatt How a subsocial intertidal beetle, Bledius spectabilis, prevents flooding and anoxia in its burrow, Behavioral Ecology and Sociobiology 19, no.55 (Nov 1986): 323–331.https://doi.org/10.1007/BF00295705A.J.S Hawkins, M.B Jones, I.D Marsden Aerial and aquatic respiration in two mud crabs, Helice crassa Dana (grapsidae) and Macrophthalmus hirtipes (Jacquinot) (ocypodidae), in relation to habitat, Comparative Biochemistry and Physiology Part A: Physiology 73, no.33 (Jan 1982): 341–347.https://doi.org/10.1016/0300-9629(82)90165-7Clay L. Montague THE INFLUENCE OF FIDDLER CRAB BURROWS AND BURROWING ON METABOLIC PROCESSES IN SALT MARSH SEDIMENTS, (Jan 1982): 283–301.https://doi.org/10.1016/B978-0-12-404070-0.50023-5I. V. Ivleva The Dependence of Crustacean Respiration Rate on Body Mass and Habitat Temperature, Internationale Revue der gesamten Hydrobiologie und Hydrographie 65, no.11 (Jan 1980): 1–47.https://doi.org/10.1002/iroh.19800650102Gloria S. Moreira, John C. McNamara, Plinio S. Moreira, Martin Weinrich Temperature and salinity effects on the respiratory metabolism of the first zoeal stage of Macrobrachium holthuisi Genofre & Lobão (decapoda: Palaemonidae), Journal of Experimental Marine Biology and Ecology 47, no.22 (Jan 1980): 141–148.https://doi.org/10.1016/0022-0981(80)90108-2Earl F Prentice, David E Schneider Respiration and thermal tolerance of the dungeness crab, Cancer magister dana, Comparative Biochemistry and Physiology Part A: Physiology 63, no.44 (Jan 1979): 591–597.https://doi.org/10.1016/0300-9629(79)90201-9AUSTIN B. WILLIAMS, THOMAS W. DUKE Crabs (Arthropoda: Crustacea: Decapoda: Brachyura), (Jan 1979): 171–233.https://doi.org/10.1016/B978-0-12-328440-2.50012-7Frank C Schatzlein, John D Costlow Oxygen consumption of the larvae of the decapod crustaceans, Emerita talpoida (say) and Libinia emarginata leach, Comparative Biochemistry and Physiology Part A: Physiology 61, no.33 (Jan 1978): 441–450.https://doi.org/10.1016/0300-9629(78)90063-4D.J. Macintosh SOME RESPONSES OF TROPICAL MANGROVE FIDDLER CRABS (UCA spp.) TO HIGH ENVIRONMENTAL TEMPERATURES, (Jan 1978): 49–56.https://doi.org/10.1016/B978-0-08-021548-8.50013-9Stephen Glen Nelson, Hiram W. Li, Allen W. Knight Calorie, carbon and nitrogen metabolism of juvenile Macrobrachium rosenbergii (de Man) (crustacea, palaemonidae) with regard to trophic position, Comparative Biochemistry and Physiology Part A: Physiology 58, no.33 (Jan 1977): 319–327.https://doi.org/10.1016/0300-9629(77)90389-9Chae E. Laird, Paul A. Haefner Effects of intrinsic and environmental factors on oxygen consumption in the blue crab, Callinectes sapidus Rathbun, Journal of Experimental Marine Biology and Ecology 22, no.22 (May 1976): 171–178.https://doi.org/10.1016/0022-0981(76)90093-9BARBARA H. GRIMES Notes on the Distribution of Hyalophysa and Gymnodinioides on Crustacean Hosts in Coastal North Carolina and a Description of Hyalophysa trageri sp. n., The Journal of Protozoology 23, no.22 (Apr 2007): 246–251.https://doi.org/10.1111/j.1550-7408.1976.tb03764.xI. D. Marsden Effect of temperature on the microdistribution of the isopod Sphaeroma rugicauda from a saltmarsh habitat, Marine Biology 38, no.22 (Jan 1976): 117–128.https://doi.org/10.1007/BF00390765R.J. Avolizi, M. Nuwayhid Effects of crude oil and dispersants on bivalves, Marine Pollution Bulletin 5, no.1010 (Oct 1974): 149–153.https://doi.org/10.1016/0025-326X(74)90007-1K. M. Veerannan Respiratory metabolism of crabs from marine and estuarine habitats: an interspecific comparison, Marine Biology 26, no.11 (Jul 1974): 35–43.https://doi.org/10.1007/BF00389084Nicholas H. Whiting, Gerald A. Moshiri Certain organism-substrate relationships affecting the distribution of Uca minax (Crustacea: Decapoda), Hydrobiologia 44, no.44 (May 1974): 481–493.https://doi.org/10.1007/BF00036312Robert M. Avent The Effects of Hydrostatic Pressure on Living Aquatic Organisms VIII. Behavioral and Metabolic Responses of Uca pugilator to Variations in Hydrostatic Pressure and Temperature, Internationale Revue der gesamten Hydrobiologie und Hydrographie 59, no.22 (Jan 1974): 219–238.https://doi.org/10.1002/iroh.19740590209Gilbert T. Rowe The Effects of the Benthic Fauna on the Physical Properties of Deep-Sea Sediments, (Jan 1974): 381–400.https://doi.org/10.1007/978-1-4684-2754-7_18G. Champalbert M�tabolisme respiratoire d'Anomalocera patersoni (Copepoda: Pontellidae), Marine Biology 19, no.44 (Apr 1973): 315–319.https://doi.org/10.1007/BF00348900M. Jawed Effects of environmental factors and body size on rates of oxygen consumption in Archaeomysis grebnitzkii and Neomysis awatschensis (Crustacea: Mysidae), Marine Biology 21, no.33 (Jan 1973): 173–179.https://doi.org/10.1007/BF00355247K. M. Veerannan Respiratory metabolism of crabs from marine and estuarine habitats. I. Scylla serrata, Marine Biology 17, no.44 (Dec 1972): 284–290.https://doi.org/10.1007/BF00366738Arthur L Buikema Oxygen consumption of the Cladoceran, Daphnia pulex, as a function of body size, light and light acclimation, Comparative Biochemistry and Physiology Part A: Physiology 42, no.44 (Aug 1972): 877–888.https://doi.org/10.1016/0300-9629(72)90394-5A. L. Rice, C. J. Chapman Observations on the burrows and burrowing behaviour of two mud-dwelling decapod crustaceans, Nephrops norvegicus and Goneplax rhomboides, Marine Biology 10, no.44 (Sep 1971): 330–342.https://doi.org/10.1007/BF00368093Gerald A. Moshiri, Charles R. Goldman, Donald R. Mull, Gordon L. Godshalk, John A. Coil Respiratory metabolism in pacifastacus leniusculus (Dana) (crustacea: decapoda) as related to its ecology, Hydrobiologia 37, no.22 (Mar 1971): 183–195.https://doi.org/10.1007/BF00015566S.K. Dwarakanath The influence of body size and temperature upon the oxygen consumption in the millipede, Spirostreptus asthenes (Pocock), Comparative Biochemistry and Physiology Part A: Physiology 38, no.22 (Feb 1971): 351–358.https://doi.org/10.1016/0300-9629(71)90061-2C. F. Mason Respiration rates and population metabolism of woodland snails, Oecologia 7, no.11 (Jan 1971): 80–94.https://doi.org/10.1007/BF00346295S. K. Dwarakanath Effect of temperature on the oxygen consumption in a tropical millipede,Harpurostreptus sp, Proceedings / Indian Academy of Sciences 73, no.11 (Jan 1971): 4–7.https://doi.org/10.1007/BF03045302J. C. Gamble Anaerobic Survival of the Crustaceans Corophium Volutator, C. Arenarium and Tanais Chevreuxi, Journal of the Marine Biological Association of the United Kingdom 50, no.33 (May 2009): 657–671.https://doi.org/10.1017/S0025315400004938 Paul A. Haefner Jr. The Effect of Low Dissolved Oxygen Concentrations on Temperature-Salinity Tolerance of the Sand Shrimp, Crangon septemspinosa Say, Physiological Zoology 43, no.11 (Sep 2015): 30–37.https://doi.org/10.1086/physzool.43.1.30152483K.H. Mann The Dynamics of Aquatic Ecosystems, (Jan 1969): 1–81.https://doi.org/10.1016/S0065-2504(08)60256-1H. Precht Der Einfluß „normaler“ Temperaturen auf Lebensprozesse bei wechselwarmen Tieren unter Ausschluß der Wachstums- und Entwicklungsprozesse, Helgoländer Wissenschaftliche Meeresuntersuchungen 18, no.44 (Dec 1968): 487–548.https://doi.org/10.1007/BF01611681Winona B. Vernberg RESPIRATION OF DIGENETIC TREMATODES*, Annals of the New York Academy of Sciences 113, no.11 (Dec 2006): 261–271.https://doi.org/10.1111/j.1749-6632.1963.tb40669.xWolfgang Wieser Adaptations of two intertidal isopods I. Respiration and feeding in Naesa bidentata (Adams) (Sphaeromatidae), Journal of the Marine Biological Association of the United Kingdom 42, no.0303 (May 2009): 665.https://doi.org/10.1017/S0025315400054345E. B. Edney THE WATER AND HEAT RELATIONSHIPS OF FIDDLER CRABS ( Uca spp.), Transactions of the Royal Society of South Africa 36, no.22 (Jan 1961): 71–91.https://doi.org/10.1080/00359196109519035H.P. WOLVEKAMP, TALBOT H. WATERMAN RESPIRATION, (Jan 1960): 35–100.https://doi.org/10.1016/B978-0-12-395628-6.50008-7MARCEL FLORKIN ECOLOGY AND METABOLISM, (Jan 1960): 395–410.https://doi.org/10.1016/B978-0-12-395628-6.50018-X
Referência(s)