Total Calorimetric Measurements on Citellus lateralis in Hibernation

1968; University of Chicago Press; Volume: 41; Issue: 3 Linguagem: Inglês

10.1086/physzool.41.3.30155466

ISSN

1937-4267

Autores

H. T. Hammel, Terence J. Dawson, R.M. Abrams, H. T. Andersen,

Tópico(s)

Physiological and biochemical adaptations

Resumo

Previous articleNext article No AccessTotal Calorimetric Measurements on Citellus lateralis in HibernationH. T. Hammel, T. J. Dawson, R. M. Abrams, and H. T. AndersenH. T. Hammel Search for more articles by this author , T. J. Dawson Search for more articles by this author , R. M. Abrams Search for more articles by this author , and H. T. Andersen Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 41, Number 3Jul., 1968 Article DOIhttps://doi.org/10.1086/physzool.41.3.30155466 Views: 1Total views on this site Citations: 45Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1968 University of ChicagoPDF download Crossref reports the following articles citing this article:Ryan J. Sprenger, William K. Milsom Changes in CO2 sensitivity during entrance into, and arousal from hibernation in Ictidomys tridecemlineatus, Journal of Comparative Physiology B 192, no.22 (Nov 2021): 361–378.https://doi.org/10.1007/s00360-021-01418-1Nigel A. S. Taylor, Elizabeth A. Taylor, Shane K. Maloney, Richard J. de Dear Contributions from a Land Down Under: The Arid Continent, (Sep 2022): 357–404.https://doi.org/10.1007/978-1-0716-2362-6_6Fritz Geiser Physiology and Thermal Biology, (Aug 2021): 109–147.https://doi.org/10.1007/978-3-030-75525-6_5M. V. Rutovskaya, M. E. Diatroptov, E. V. Kuznetzova, A. I. Anufriev, N. Y. Feoktistova, A. V. Surov The Dynamics of Body Temperature of the Eastern European Hedgehog (Erinaceus roumanicus) during Winter Hibernation, Biology Bulletin 46, no.99 (Feb 2020): 1136–1145.https://doi.org/10.1134/S1062359019090127Cheryl L. Webb, William K. Milsom Effects of low temperature on breathing pattern and ventilatory responses during hibernation in the golden-mantled ground squirrel, Journal of Comparative Physiology B 187, no.5-65-6 (Apr 2017): 793–802.https://doi.org/10.1007/s00360-017-1079-4Thomas Ruf, Fritz Geiser Daily torpor and hibernation in birds and mammals, Biological Reviews 90, no.33 (Aug 2014): 891–926.https://doi.org/10.1111/brv.12137M. M. Richter, C. T. Williams, T. N. Lee, Ø. Tøien, G. L. Florant, B. M. Barnes, and C. L. Buck Thermogenic Capacity at Subzero Temperatures: How Low Can a Hibernator Go?, Physiological and Biochemical Zoology 88, no.11 (Jun 2015): 81–89.https://doi.org/10.1086/679591Donald C. Jackson Academic genealogy and direct calorimetry: a personal account, Advances in Physiology Education 35, no.22 (Jun 2011): 120–127.https://doi.org/10.1152/advan.00121.2010William K. Milsom, Donald C. Jackson Hibernation and Gas Exchange, (Jan 2011): 397–420.https://doi.org/10.1002/cphy.c090018Brian K. Mcnab The evolution of energetics in eutherian “insectivorans”: an alternate approach, Acta Theriologica 51, no.22 (Jun 2006): 113–128.https://doi.org/10.1007/BF03192663Fritz Geiser Metabolic Rate and Body Temperature Reduction During Hibernation and Daily Torpor, Annual Review of Physiology 66, no.11 (Mar 2004): 239–274.https://doi.org/10.1146/annurev.physiol.66.032102.115105Masaaki Hashimoto, Bihu Gao, Kazue Kikuchi-Utsumi, Hiroshi Ohinata, Peter G Osborne Arousal from hibernation and BAT thermogenesis against cold: central mechanism and molecular basis, Journal of Thermal Biology 27, no.66 (Dec 2002): 503–515.https://doi.org/10.1016/S0306-4565(02)00024-4Michael E. Pereira, Jason Aines, Jeffrey L. Scheckter TACTICS OF HETEROTHERMY IN EASTERN GRAY SQUIRRELS (SCIURUS CAROLINENSIS), Journal of Mammalogy 83, no.22 (May 2002): 467–477.https://doi.org/10.1644/1545-1542(2002)083<0467:TOHIEG>2.0.CO;2 M. Beth Zimmer and William K. Milsom Effects of Changing Ambient Temperature on Metabolic, Heart, and Ventilation Rates during Steady State Hibernation in Golden‐Mantled Ground Squirrels (Spermophilus lateralis) M. B. Zimmer and W. K. Milsom, Physiological and Biochemical Zoology 74, no.55 (Jul 2015): 714–723.https://doi.org/10.1086/322930Sylvia Ortmann, Gerhard Heldmaier Regulation of body temperature and energy requirements of hibernating Alpine marmots ( Marmota marmota ), American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 278, no.33 (Mar 2000): R698–R704.https://doi.org/10.1152/ajpregu.2000.278.3.R698G. Heldmaier, T. Ruf Body temperature and metabolic rate during natural hypothermia in endotherms, Journal of Comparative Physiology B 162, no.88 (Dec 1992): 696–706.https://doi.org/10.1007/BF00301619G.C. Hays, P.I. Webb, J.R. Speakman Arrhythmic breathing in torpid pipistrelle bats, Pipistrellus pipistrellus, Respiration Physiology 85, no.22 (Aug 1991): 185–192.https://doi.org/10.1016/0034-5687(91)90060-VB. Barnes Freeze avoidance in a mammal: body temperatures below 0 degree C in an Arctic hibernator, Science 244, no.49124912 (Jun 1989): 1593–1595.https://doi.org/10.1126/science.2740905 Fritz Geiser , and G. J. Kenagy Torpor Duration in Relation to Temperature and Metabolism in Hibernating Ground Squirrels, Physiological Zoology 61, no.55 (Sep 2015): 442–449.https://doi.org/10.1086/physzool.61.5.30161266Fritz Geiser Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition?, Journal of Comparative Physiology B 158, no.11 (Jan 1988): 25–37.https://doi.org/10.1007/BF00692726Alan R. French Allometries of the durations of torpid and euthermic intervals during mammalian hibernation: A test of the theory of metabolic control of the timing of changes in body temperature, Journal of Comparative Physiology B 156, no.11 (Nov 1985): 13–19.https://doi.org/10.1007/BF00692921Lawrence C Wit, John W Twente The effects of hibernation stress on the heart rate and metabolic rate of Citellus lateralis, Comparative Biochemistry and Physiology Part A: Physiology 74, no.44 (Jan 1983): 817–822.https://doi.org/10.1016/0300-9629(83)90352-3Lawrence C Wit, John W Twente Metabolic responses of hibernating golden-mantled ground squirrels Citellus lateralis to lowered environmental temperatures, Comparative Biochemistry and Physiology Part A: Physiology 74, no.44 (Jan 1983): 823–827.https://doi.org/10.1016/0300-9629(83)90353-5J.M. Steffen, M.L. Riedesel Pulmonary ventilation and cardiac activity in hibernating and arousing golden-mantled ground squirrels (Spermophilus lateralis), Cryobiology 19, no.11 (Feb 1982): 83–91.https://doi.org/10.1016/0011-2240(82)90127-4Alexander L. Beckman, Toni L. Stanton Properties of the CNS During the State of Hibernation, (Jan 1982): 19–45.https://doi.org/10.1007/978-94-011-6302-6_2CHARLES P. LYMAN, JOHN S. WILLIS, ANDRÉ MALAN, LAWRENCE C.H. WANG Mechanisms of Arousal, (Jan 1982): 104–123.https://doi.org/10.1016/B978-0-12-460420-9.50011-8 Barbara D. Snapp , and H. Craig Heller Suppression of Metabolism during Hibernation in Ground Squirrels (Citellus lateralis), Physiological Zoology 54, no.33 (Sep 2015): 297–307.https://doi.org/10.1086/physzool.54.3.30159944F. Geiser, R. Hilbig, H. Rahmann Hibernation-induced changes in the ganglioside composition of dormice (Glis glis), Journal of Thermal Biology 6, no.33 (Jul 1981): 145–151.https://doi.org/10.1016/0306-4565(81)90049-8 Jack W. Hudson , and Irena M. Scott Daily Torpor in the Laboratory Mouse, Mus musculus Var. Albino, Physiological Zoology 52, no.22 (Sep 2015): 205–218.https://doi.org/10.1086/physzool.52.2.30152564Reinhard Hilbig, Hinrich Rahmann Changes in brain ganglioside composition of normothermic and hibernating golden hamsters (Mesocricetus auratus), Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 62, no.44 (Jan 1979): 527–531.https://doi.org/10.1016/0305-0491(79)90128-7Lawrence C.H. Wang ENERGETIC AND FIELD ASPECTS OF MAMMALIAN TORPOR: THE RICHARDSON'S GROUND SQUIRREL, (Jan 1978): 109–145.https://doi.org/10.1016/B978-0-12-734550-5.50009-0H.C. Heller, J.M. Walker, G.L. Florant, S.F. Glotzbach, R.J. Berger SLEEP AND HIBERNATION: ELECTROPHYSIOLOGICAL AND THERMOREGULATORY HOMOLOGIES, (Jan 1978): 225–265.https://doi.org/10.1016/B978-0-12-734550-5.50012-0John W. Twente, Janet Twente AUTONOMIC REGULATION OF HIBERNATION BY CITELLUS AND EPTESICUS, (Jan 1978): 327–373.https://doi.org/10.1016/B978-0-12-734550-5.50015-6Helge Walhovd, Jan Vestergaard Jensen Some aspects of the metabolism of hibernating and recently aroused common dormouse Muscardinus avellanarius L. (Rodentia, Gliridae), Oecologia 22, no.44 (Jan 1976): 425–429.https://doi.org/10.1007/BF00345318Helge Walhovd Partial arousals from hibernation in a pair of common dormice, Muscardinus avellanarius (Rodentia, Gliridae), in their natural hibernaculum, Oecologia 25, no.44 (Jan 1976): 321–330.https://doi.org/10.1007/BF00345605Michael L. May Warming rates as a function of body size in periodic endotherms, Journal of Comparative Physiology ? B 111, no.11 (Jan 1976): 55–70.https://doi.org/10.1007/BF00691111Jack W. Hudson, Daniel R. Deavers Metabolism, pulmocutaneous water loss and respiration of eight species of ground squirrels from different environments, Comparative Biochemistry and Physiology Part A: Physiology 45, no.11 (May 1973): 69–100.https://doi.org/10.1016/0300-9629(73)90009-1J.W. HUDSON TORPIDITY IN MAMMALS, (Jan 1973): 97–165.https://doi.org/10.1016/B978-0-12-747603-2.50009-6Steven H. Mills, F.E. South Central regulation of temperature in hibernation and normothermia, Cryobiology 9, no.55 (Oct 1972): 393–403.https://doi.org/10.1016/0011-2240(72)90156-3Bruce H. Barkalow, Albert M. Cook, Luke E. Rose, Francis M. Long Transient Heat Measurements: A Transducer Model, IEEE Transactions on Biomedical Engineering BME-19, no.22 (Mar 1972): 143–147.https://doi.org/10.1109/TBME.1972.324056H.Craig Heller, Harold T Hammel CNS control of body temperature during hibernation, Comparative Biochemistry and Physiology Part A: Physiology 41, no.22 (Feb 1972): 349–359.https://doi.org/10.1016/0300-9629(72)90066-7H. C. Heller, H. T. Hammel CNS regulation of body temperature in the hibernator CITELLUS LATERALIS, International Journal of Biometeorology 15, no.2-42-4 (Dec 1971): 231–235.https://doi.org/10.1007/BF01803904M.K. Yousef, W.G. Bradley Physiological and ecological studies on Citellus lateralis, Comparative Biochemistry and Physiology Part A: Physiology 39, no.44 (Aug 1971): 671–682.https://doi.org/10.1016/0300-9629(71)90191-5 Lawrence Chia-Huang Wang, Jack W. Hudson Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus, Comparative Biochemistry and Physiology Part A: Physiology 38, no.11 (Jan 1971): 59–90.https://doi.org/10.1016/0300-9629(71)90098-3Lawrence Chia-Huang Wang, Jack W. Hudson Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse, perognathus hispidus, Comparative Biochemistry and Physiology 32, no.22 (Jan 1970): 275–293.https://doi.org/10.1016/0010-406X(70)90941-2

Referência(s)
Altmetric
PlumX