Artigo Revisado por pares

Recent Progress in Two-Dimensional Oxide Photocatalysts for Water Splitting

2014; American Chemical Society; Volume: 5; Issue: 15 Linguagem: Inglês

10.1021/jz5010957

ISSN

1948-7185

Autores

Shintaro Ida, Tatsumi Ishihara,

Tópico(s)

Gas Sensing Nanomaterials and Sensors

Resumo

This Perspective focuses on the photocatalytic activity of two-dimensional (2D) oxide and nitrogen-doped oxide crystals and the effective use of 2D photocatalysts for understanding the mechanism of the water splitting reaction. Strategies for improving the activities of 2D photocatalysts are slightly different from those of bulk photocatalysts. Although it is well-known that a photocatalyst without co-catalyst loading has low activity for hydrogen production from water, a certain type of 2D oxide nanosheet shows high activity without co-catalyst loading. It is difficult to determine what factors contribute to this separation of oxidation and reduction sites of water because there are many factors on the reaction surface. A nanosheet p-n junction surface is an ideal surface for understanding the carrier transfer during the photocatalytic reaction. In this system, the driving force of the carrier transfer to the reaction sites was found to be the potential gradient generated by the nanosheet junction.

Referência(s)