The Effects of Dehydration on Water and Electrolytes in Ambystoma tigrinum
1972; University of Chicago Press; Volume: 45; Issue: 1 Linguagem: Inglês
10.1086/physzool.45.1.30155925
ISSN1937-4267
Autores Tópico(s)Agriculture, Soil, Plant Science
ResumoPrevious articleNext article No AccessThe Effects of Dehydration on Water and Electrolytes in Ambystoma tigrinumRonald H. AlvaradoRonald H. Alvarado Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 45, Number 1Jan., 1972 Article DOIhttps://doi.org/10.1086/physzool.45.1.30155925 Views: 5Total views on this site Citations: 24Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1972 The University of ChicagoPDF download Crossref reports the following articles citing this article:Arianne F. Messerman, Manuel Leal Inter- and intraspecific variation in juvenile metabolism and water loss among five biphasic amphibian species, Oecologia 194, no.33 (Oct 2020): 371–382.https://doi.org/10.1007/s00442-020-04780-zStanley S. Hillman Anuran amphibians as comparative models for understanding extreme dehydration tolerance: a unique negative feedback lymphatic mechanism for blood volume regulation, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 315, no.44 (Oct 2018): R790–R798.https://doi.org/10.1152/ajpregu.00160.2018Rodolfo C. O. Anderson, Rafael P. Bovo, Carlos E. Eismann, Amauri A. Menegario, and Denis V. Andrade Not Good, but Not All Bad: Dehydration Effects on Body Fluids, Organ Masses, and Water Flux through the Skin of Rhinella schneideri (Amphibia, Bufonidae), Physiological and Biochemical Zoology 90, no.33 (Jan 2017): 313–320.https://doi.org/10.1086/690189Stanley Hillyard, Nadja Møbjerg, Shigeyasu Tanaka, Erik Larsen Osmotic and Ion Regulation in Amphibians, (Feb 2014): 367–441.https://doi.org/10.1201/9780849380525.ch9R. Schmuck, K.E. Linsenmair Regulation of body water balance in reedfrogs (superspecies Hyperolius viridiflavus and Hyperolius marmoratus: Amphibia, anura, hyperoliidae) living in unpredictably varying savannah environments, Comparative Biochemistry and Physiology Part A: Physiology 118, no.44 (Dec 1997): 1335–1352.https://doi.org/10.1016/S0300-9629(97)86804-1C. BARKER JØRGENSEN 200 YEARS OF AMPHIBIAN WATER ECONOMY: FROM ROBERT TOWNSON TO THE PRESENT, Biological Reviews 72, no.22 (Jan 2007): 153–237.https://doi.org/10.1111/j.1469-185X.1997.tb00013.xTheodore Garland, Karen L.M. Martin, Ramon Díaz-Uriarte RECONSTRUCTING ANCESTRAL TRAIT VALUES USING SQUARED-CHANGE PARSIMONY: PLASMA OSMOLARITY AT THE ORIGIN OF AMNIOTES, (Jan 1997): 425–501.https://doi.org/10.1016/B978-012676460-4/50014-7C.Barker Jørgensen Water economy in a terrestrial toad (Bufo bufo), with special reference to cutaneous drinking and urinary bladder function, Comparative Biochemistry and Physiology Part A: Physiology 109, no.22 (Oct 1994): 311–324.https://doi.org/10.1016/0300-9629(94)90134-1J. E. Flanigan, P. C. Withers, C. J. Fuery, M. Guppy Metabolic depression and Na+/K+ gradients in the aestivating Australian goldfields frog, Neobatrachus wilsmorei, Journal of Comparative Physiology B 163, no.77 (Dec 1993): 587–593.https://doi.org/10.1007/BF00302118Marc B. Carey, Randy Zelick The effect of sound level, temperature and dehydration on the brainstem auditory evoked potential in anuran amphibians, Hearing Research 70, no.22 (Nov 1993): 216–228.https://doi.org/10.1016/0378-5955(93)90160-3 Stanley S. Hillman Dehydrational Effects on Brain and Cerebrospinal Fluid Electrolytes in Two Amphibians, Physiological Zoology 61, no.33 (Sep 2015): 254–259.https://doi.org/10.1086/physzool.61.3.30161238S. S. Hillman, P. C. Withers The hemodynamic consequences of hemorrhage and hypernatremia in two amphibians, Journal of Comparative Physiology B 157, no.66 (Jan 1988): 807–812.https://doi.org/10.1007/BF00691012 Stanley S. Hillman Dehydrational Effects on Cardiovascular and Metabolic Capacity in Two Amphibians, Physiological Zoology 60, no.55 (Sep 2015): 608–613.https://doi.org/10.1086/physzool.60.5.30156135 Stanley S. Hillman , Andrew Zygmunt , and Mark Baustian Transcapillary Fluid Forces during Dehydration in Two Amphibians, Physiological Zoology 60, no.33 (Sep 2015): 339–345.https://doi.org/10.1086/physzool.60.3.30162287DIANNE B. SEALE Amphibia, (Jan 1987): 467–552.https://doi.org/10.1016/B978-0-12-544792-8.50012-7 Carol A. Beuchat , David Vleck , and Eldon J. Braun Role of the Urinary Bladder in Osmotic Regulation of Neonatal Lizards, Physiological Zoology 59, no.55 (Sep 2015): 539–551.https://doi.org/10.1086/physzool.59.5.30156118Stanley S. Hillman Inotropic influence of dehydration and hyperosmolal solutions on amphibian cardiac muscle, Journal of Comparative Physiology B 154, no.33 (Apr 1984): 325–328.https://doi.org/10.1007/BF02464414G Degani, M.R Warburg Changes in concentrations of ions and urea in both plasma and muscle tissue in a dehydrated hylid anuran, Comparative Biochemistry and Physiology Part A: Physiology 77, no.22 (Jan 1984): 357–360.https://doi.org/10.1016/0300-9629(84)90073-2Stanley S Hillman The effects of in vivo and in vitro hyperosmolality on skeletal muscle performance in the amphibians Rana pipiens and Scaphiopus couchii, Comparative Biochemistry and Physiology Part A: Physiology 73, no.44 (Jan 1982): 709–712.https://doi.org/10.1016/0300-9629(82)90279-1M.R Warburg, Gad Degani Evaporative water loss and uptake in juvenile and adult Salamandra salamandra (L.) (Amphibia: Urodela), Comparative Biochemistry and Physiology Part A: Physiology 62, no.44 (Jan 1979): 1071–1075.https://doi.org/10.1016/0300-9629(79)90051-3Stanley S Hillman Some effects of dehydration on internal distributions of water and solutes in Xenopus laevis, Comparative Biochemistry and Physiology Part A: Physiology 61, no.22 (Jan 1978): 303–307.https://doi.org/10.1016/0300-9629(78)90113-5Patricia Stocking Brown, Stephen C. Brown Water balance responses to dehydration and neurohypophysial peptides in the salamander, Notophthalmus viridescens, General and Comparative Endocrinology 31, no.22 (Feb 1977): 189–201.https://doi.org/10.1016/0016-6480(77)90017-XP.J. Wittouck Influence de la composition saline du milieu sur la concentration ionique du sérum chez l'axolotl, intact et hypophysectomise effet de la prolactine, General and Comparative Endocrinology 27, no.22 (Oct 1975): 169–178.https://doi.org/10.1016/0016-6480(75)90231-2Jeff Delson, Walter G Whitford Adaptation of the tiger salamander, Ambystoma tigrinum, to arid habitats, Comparative Biochemistry and Physiology Part A: Physiology 46, no.44 (Dec 1973): 631–638.https://doi.org/10.1016/0300-9629(73)90116-3
Referência(s)