Multiple Pathways for Repair of Oxidative DNA Damages Caused by X Rays and Hydrogen Peroxide in Escherichia coli
1992; Radiation Research Society; Volume: 132; Issue: 3 Linguagem: Inglês
10.2307/3578241
ISSN1938-5404
AutoresQ M Zhang, Shuji Yonei, Mitsuo Kato,
Tópico(s)DNA and Nucleic Acid Chemistry
ResumoThe responses of Escherichia coli to X rays and hydrogen peroxide were examined in mutants which are deficient in one or more DNA repair genes. Mutant cells deficient in either exonuclease III (xthA) or endonuclease IV (nfo) had normal resistance to X rays, but an xthA-nfo double mutant showed a sensitivity increased over that of either parental strain. A DNA polymerase I mutant (polA) was more sensitive than the xthA-nfo mutant. Cells bearing mutations in all of the polA, xthA, and nfo genes were more sensitive to X rays than polA and xthA-nfo mutants. Similar repair responses were obtained by exposing these mutant cells to hydrogen peroxide, with the exception of the xthA mutant, which was hypersensitive to this agent. The DNA polymerase III mutant (polC(Ts)) was slightly more sensitive to the agents than the wild-type strain at the restrictive temperature. The sensitivity of the polC-xthA-nfo mutant to X rays and hydrogen peroxide was greater than that of polC but almost the same as that of the xthA-nfo mutant. From these results it appears that there are at least four repair pathways, the DNA polymerase I-, exonuclease III/endonuclease IV and DNA polymerase I-, exonuclease III/endonuclease IV and DNA polymerase III-, and exonuclease III/endonuclease IV-dependent pathways, for the repair of oxidative DNA damages in E. coli.
Referência(s)