Artigo Revisado por pares

Label-Free and Selective Photoelectrochemical Detection of Chemical DNA Methylation Damage Using DNA Repair Enzymes

2013; American Chemical Society; Volume: 85; Issue: 14 Linguagem: Inglês

10.1021/ac401346x

ISSN

1520-6882

Autores

Yiping Wu, Bintian Zhang, Liang‐Hong Guo,

Tópico(s)

Epigenetics and DNA Methylation

Resumo

Exogenous chemicals may produce DNA methylation that is potentially toxic to living systems. Methylated DNA bases are difficult to detect with biosensors because the methyl group is small and chemically inert. In this report, a label-free photoelectrochemical sensor was developed for the selective detection of chemically methylated bases in DNA films. The sensor employed two DNA repair enzymes, human alkyladenine DNA glycosylase and human apurinic/apyrimidinic endonuclease, to convert DNA methylation sites in DNA films on indium tin oxide electrodes into strand breaks. A DNA intercalator, Ru(bpy)2(dppz)(2+) (bpy=2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) was then used as the photoelectrochemical signal indicator to detect the DNA strand breaks. Its photocurrent signal was found to correlate inversely with the amount of 3-methyladenines (metAde) produced with a methylating agent, methylmethane sulfonate (MMS). The sensor detected the methylated bases produced with as low as 1 mM MMS, at which concentration the amount of metAde on the sensor surface was estimated to be 0.5 pg, or 1 metAde in 1.6 × 10(5) normal bases. Other DNA base modification products, such as 5-methylcytosine and DNA adducts with ethyl and styrene groups did not attenuate the photocurrent, demonstrating good selectivity of the sensor. This strategy can be utilized to develop sensors for the detection of other modified DNA bases with specific DNA repair enzymes.

Referência(s)
Altmetric
PlumX