The Regulation of Cardiac Activity in Fish in a Hypoxic Environment

1967; University of Chicago Press; Volume: 40; Issue: 2 Linguagem: Inglês

10.1086/physzool.40.2.30152445

ISSN

1937-4267

Autores

David Randall, Jeremy C. Smith,

Tópico(s)

Heart Rate Variability and Autonomic Control

Resumo

Previous articleNext article No AccessThe Regulation of Cardiac Activity in Fish in a Hypoxic EnvironmentD. J. Randall, and J. C. SmithD. J. Randall, and J. C. SmithPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 40, Number 2Apr., 1967 Article DOIhttps://doi.org/10.1086/physzool.40.2.30152445 Views: 7Total views on this site Citations: 83Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1967 University of ChicagoPDF download Crossref reports the following articles citing this article:William K. Milsom, Kathleen M. Gilmour, Steve Perry, Luciane H. Gargaglioni, Michael S. Hedrick, Richard Kinkead, Tobias Wang Control of Breathing in Ectothermic Vertebrates, (Aug 2022): 3869–3988.https://doi.org/10.1002/cphy.c210041John Sebastiani, Allyson Sabatelli, M. Danielle McDonald Mild hypoxia exposure impacts peripheral serotonin uptake and degradation in Gulf toadfish ( Opsanus beta ), Journal of Experimental Biology 225, no.1313 (Jun 2022).https://doi.org/10.1242/jeb.244064Edwin W. Taylor, Tobias Wang, Cleo A.C. Leite An overview of the phylogeny of cardiorespiratory control in vertebrates with some reflections on the ‘Polyvagal Theory’, Biological Psychology 172 (Jul 2022): 108382.https://doi.org/10.1016/j.biopsycho.2022.108382William Joyce, Tobias Wang Regulation of heart rate in vertebrates during hypoxia: A comparative overview, Acta Physiologica 234, no.33 (Jan 2022).https://doi.org/10.1111/apha.13779Elizabeth Allmon, Jennifer Serafin, Shuai Chen, Danielle Simning, Robert Griffitt, Thijs Bosker, Sylvain De Guise, Maria S. Sepúlveda The influence of hypoxia on the cardiac transcriptomes of two estuarine species - C. variegatus and F. grandis, Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 39 (Sep 2021): 100837.https://doi.org/10.1016/j.cbd.2021.100837Elizabeth Allmon, Jennifer Serafin, Shuai Chen, Maria L. Rodgers, Robert Griffitt, Thijs Bosker, Sylvain de Guise, Maria S. Sepúlveda Effects of polycyclic aromatic hydrocarbons and abiotic stressors on Fundulus grandis cardiac transcriptomics, Science of The Total Environment (Sep 2020): 142156.https://doi.org/10.1016/j.scitotenv.2020.142156Neha Acharya-Patel, Courtney A. Deck, William K. Milsom Cardiorespiratory interactions in the Pacific spiny dogfish, Squalus suckleyi, The Journal of Experimental Biology 221, no.1717 (Jul 2018): jeb183830.https://doi.org/10.1242/jeb.183830Kevin T. Stiller, Klaus H. Vanselow, Damian Moran, Guido Riesen, Wolfgang Koppe, Carsten Dietz, Carsten Schulz The effect of diet, temperature and intermittent low oxygen on the metabolism of rainbow trout, British Journal of Nutrition 117, no.66 (Apr 2017): 784–795.https://doi.org/10.1017/S0007114517000472Jonathan A.W. Stecyk Cardiovascular Responses to Limiting Oxygen Levels, (Jan 2017): 299–371.https://doi.org/10.1016/bs.fp.2017.09.005Velislava Tzaneva, Steve F. Perry Evidence for a role of heme oxygenase-1 in the control of cardiac function in zebrafish ( Danio rerio ) larvae exposed to hypoxia, The Journal of Experimental Biology 219, no.1010 (Mar 2016): 1563–1571.https://doi.org/10.1242/jeb.136853William K. Milsom, Edwin (Ted) W. Taylor Control of Breathing in Elasmobranchs, (Jan 2015): 83–126.https://doi.org/10.1016/B978-0-12-801286-4.00002-2D. J. Randall, J. L. Rummer, J. M. Wilson, S. Wang, C. J. Brauner A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes, Journal of Experimental Biology 217, no.88 (Apr 2014): 1205–1214.https://doi.org/10.1242/jeb.093526Edwin W. Taylor, Cleo A. C. Leite, Marina R. Sartori, Tobias Wang, Augusto S. Abe, Dane A. Crossley The phylogeny and ontogeny of autonomic control of the heart and cardiorespiratory interactions in vertebrates, Journal of Experimental Biology 217, no.55 (Mar 2014): 690–703.https://doi.org/10.1242/jeb.086199M. Priyadarshini, J. Tuimala, Y.C. Chen, P. Panula A zebrafish model of PINK1 deficiency reveals key pathway dysfunction including HIF signaling, Neurobiology of Disease 54 (Jun 2013): 127–138.https://doi.org/10.1016/j.nbd.2013.02.002A.N. Keen, A. Kurt Gamperl Blood oxygenation and cardiorespiratory function in steelhead trout (Oncorhynchus mykiss) challenged with an acute temperature increase and zatebradine-induced bradycardia, Journal of Thermal Biology 37, no.33 (Apr 2012): 201–210.https://doi.org/10.1016/j.jtherbio.2012.01.002E.W. Taylor INTEGRATED CONTROL AND RESPONSE OF THE CIRCULATORY SYSTEM | Central Control of Cardiorespiratory Interactions in Fish, (Jan 2011): 1178–1189.https://doi.org/10.1016/B978-0-12-374553-8.00061-7E.W. Taylor, C.A.C. Leite, N. Skovgaard Autonomic control of cardiorespiratory interactions in fish, amphibians and reptiles, Brazilian Journal of Medical and Biological Research 43, no.77 (Jul 2010): 600–610.https://doi.org/10.1590/S0100-879X2010007500044G. J. A. Janssen, A. R. Jerrett, S. E. Black, M. E. Forster The effects of progressive hypoxia and re-oxygenation on cardiac function, white muscle perfusion and haemoglobin saturation in anaesthetised snapper (Pagrus auratus), Journal of Comparative Physiology B 180, no.44 (Dec 2009): 503–510.https://doi.org/10.1007/s00360-009-0429-2Göran E. Nilsson, David J. Randall Adaptations to hypoxia in fishes, (Jan 2010): 131–173.https://doi.org/10.1017/CBO9780511845178.006Erik Sandblom, Timothy D. Clark, Scott G. Hinch, Anthony P. Farrell Sex-specific differences in cardiac control and hematology of sockeye salmon ( Oncorhynchus nerka ) approaching their spawning grounds, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 297, no.44 (Oct 2009): R1136–R1143.https://doi.org/10.1152/ajpregu.00363.2009Cleo Alcantara Costa Leite, E. W. Taylor, C. D. R. Guerra, L. H. Florindo, T. Belão, F. T. Rantin The role of the vagus nerve in the generation of cardiorespiratory interactions in a neotropical fish, the pacu, Piaractus mesopotamicus, Journal of Comparative Physiology A 195, no.88 (May 2009): 721–731.https://doi.org/10.1007/s00359-009-0447-2Edwin W. Taylor, Cleo A.C. Leite, Jennifer J. Levings Central control of cardiorespiratory interactions in fish, Acta Histochemica 111, no.33 (May 2009): 257–267.https://doi.org/10.1016/j.acthis.2008.11.006E. W. Taylor, C. A. C. Leite, L. H. Florindo, T. Belao, F. T. Rantin The basis of vagal efferent control of heart rate in a neotropical fish, the pacu, Piaractus mesopotamicus, Journal of Experimental Biology 212, no.77 (Mar 2009): 906–913.https://doi.org/10.1242/jeb.020529E. W. Taylor, T. Wang Control of the Heart and of Cardiorespiratory Interactions in Ectothermic Vertebrates, (Jun 2009): 285–315.https://doi.org/10.1007/978-3-540-93985-6_13C. A. C. Leite, L. H. Florindo, A. L. Kalinin, W. K. Milsom, F. T. Rantin Gill chemoreceptors and cardio-respiratory reflexes in the neotropical teleost pacu, Piaractus mesopotamicus, Journal of Comparative Physiology A 193, no.99 (Aug 2007): 1001–1011.https://doi.org/10.1007/s00359-007-0257-3Hamish A. Campbell, Stuart Egginton The vagus nerve mediates cardio-respiratory coupling that changes with metabolic demand in a temperate nototheniod fish, Journal of Experimental Biology 210, no.1414 (Jul 2007): 2472–2480.https://doi.org/10.1242/jeb.003822Paul Grossman, Edwin W. Taylor Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions, Biological Psychology 74, no.22 (Feb 2007): 263–285.https://doi.org/10.1016/j.biopsycho.2005.11.014Edwin Taylor, Cleo Leite, Hamish Campbell, Itsara Intanai, Tobias Wang Control of the Heart in Fish, (Dec 2011): 341–375.https://doi.org/10.1201/b11000-18 E. W. (Ted) Taylor , Hamish A. Campbell , Jenny J. Levings , Michael J. Young , Patrick J. Butler , and Stuart Egginton Coupling of the Respiratory Rhythm in Fish with Activity in Hypobranchial Nerves and with Heartbeat E. W. Taylor, H. A. Campbell, J. J. Levings, M. J. Young, P. J. Butler, and S. Egginton, Physiological and Biochemical Zoology 79, no.66 (Jul 2015): 1000–1009.https://doi.org/10.1086/507663H.A. Campbell, J.Z. Klepacki, S. Egginton A new method in applying power spectral statistics to examine cardio-respiratory interactions in fish, Journal of Theoretical Biology 241, no.22 (Jul 2006): 410–419.https://doi.org/10.1016/j.jtbi.2005.12.005 J. A. W. Stecyk and A. P. Farrell Regulation of the Cardiorespiratory System of Common Carp (Cyprinus carpio) during Severe Hypoxia at Three Seasonal Acclimation Temperatures J. A. W. Stecyk and A. P. Farrell, Physiological and Biochemical Zoology 79, no.33 (Jul 2015): 614–627.https://doi.org/10.1086/501064B. Vulesevic Chemoreceptor plasticity and respiratory acclimation in the zebrafish Danio rerio, Journal of Experimental Biology 209, no.77 (Apr 2006): 1261–1273.https://doi.org/10.1242/jeb.02058Kathleen M. Gilmour, Steve F. Perry Branchial Chemoreceptor Regulation of Cardiorespiratory Function, (Jan 2006): 97–151.https://doi.org/10.1016/S1546-5098(06)25003-9J. Turesson N-methyl-D-aspartate receptors mediate chemoreflexes in the shorthorn sculpin Myoxocephalus scorpius, Journal of Experimental Biology 206, no.77 (Apr 2003): 1251–1259.https://doi.org/10.1242/jeb.00224Michael P Smith, Michael J Russell, Jeffrey T Wincko, Kenneth R Olson Effects of hypoxia on isolated vessels and perfused gills of rainbow trout, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 130, no.11 (Aug 2001): 171–181.https://doi.org/10.1016/S1095-6433(01)00383-XAnette Hoffmann, Sonia Maria Brazil Romero Effect of the dry-cold season dormancy on the tonic and phasic neural control of heart rate in the toad,Bufo paracnemis, Journal of Experimental Zoology 287, no.11 (Jan 2000): 15–20.https://doi.org/10.1002/1097-010X(20000615)287:1<15::AID-JEZ2>3.0.CO;2-EG. T. Ruggerone Differential survival of juvenile sockeye and coho salmon exposed to low dissolved oxygen during winter, Journal of Fish Biology 56, no.44 (Apr 2000): 1013–1016.https://doi.org/10.1111/j.1095-8649.2000.tb00889.xEdwin W. Taylor, David Jordan, John H. Coote Central Control of the Cardiovascular and Respiratory Systems and Their Interactions in Vertebrates, Physiological Reviews 79, no.33 (Jul 1999): 855–916.https://doi.org/10.1152/physrev.1999.79.3.855H. Yoshikawa, Y. Ishida, S. Nakamura, H. Matsui Effects of acute thermal changes on cerebral blood flow and electroencephalograms in curarized carp, Journal of Thermal Biology 22, no.4-54-5 (Aug 1997): 227–235.https://doi.org/10.1016/S0306-4565(97)00014-4H. Yoshikawa, Y. Ishida, K. Kawata, F. Kawai, M. Kanamori Electroencephalograms and cerebral blood flow in carp, Cyprinus carpio, subjected to acute hypoxia, Journal of Fish Biology 46, no.11 (Jan 1995): 114–122.https://doi.org/10.1111/j.1095-8649.1995.tb05950.xKristian Borch, Frank B. Jensen, Bent B. Andersen Cardiac activity, ventilation rate and acid-base regulation in rainbow trout exposed to hypoxia and combined hypoxia and hypercapnia, Fish Physiology and Biochemistry 12, no.22 (Aug 1993): 101–110.https://doi.org/10.1007/BF00004375Patricia K. Schmieder, Lavern J. Weber Blood and water flow limitations on gill uptake of organic chemicals in the rainbow trout (Onchorynchus mykiss), Aquatic Toxicology 24, no.1-21-2 (Nov 1992): 103–121.https://doi.org/10.1016/0166-445X(92)90019-JIzuru Kakuta, Shiro Murachi Renal response to hypoxia in carp, Cyprinus carpio: Changes in glomerular filtration rate, urine and blood properties and plasma catecholamines of carp exposed to hypoxic conditions, Comparative Biochemistry and Physiology Part A: Physiology 103, no.22 (Oct 1992): 259–267.https://doi.org/10.1016/0300-9629(92)90577-DIzuru Kakuta, Shiro Murachi Responses of the blenny Istiblennius enosimae exposed to asphyxic environments—1. Effects on heart rate and urine flow, Comparative Biochemistry and Physiology Part A: Physiology 102, no.22 (Jun 1992): 295–298.https://doi.org/10.1016/0300-9629(92)90138-GY. Bailly, S. Dunel-Erb, P. Laurent The neuroepithelial cells of the fish gill filament: Indolamine-immunocytochemistry and innervation, The Anatomical Record 233, no.11 (May 1992): 143–161.https://doi.org/10.1002/ar.1092330118Kakuta Izuru, Namba Kenji, Uemaisu Kazumasa, Murachi Siro Effects of hypoxia on renal function in carp, Cyprinus carpio, Comparative Biochemistry and Physiology Part A: Physiology 101, no.44 (Apr 1992): 769–774.https://doi.org/10.1016/0300-9629(92)90356-UE.W. Taylor 6 Nervous Control of the Heart and Cardiorespiratory Interactions, (Jan 1992): 343–387.https://doi.org/10.1016/S1546-5098(08)60013-8Mark L. Burleson, Neal J. Smatresk, William K. Milsom 7 Afferent Inputs Associated with Cardioventilatory Control in Fish, (Jan 1992): 389–426.https://doi.org/10.1016/S1546-5098(08)60014-XRegina Fritsche Effects of hypoxia on blood pressure and heart rate in three marine teleosts, Fish Physiology and Biochemistry 8, no.11 (Jan 1990): 85–92.https://doi.org/10.1007/BF00004435Roger Lennard, Henry Huddart Purinergic modulation of cardiac activity in the flounder during hypoxic stress, Journal of Comparative Physiology B 159, no.11 (Jan 1989): 105–113.https://doi.org/10.1007/BF00692689K. L. Yu, N. Y. S. Woo Changes in blood respiratory properties and cardiovascular function during acute exposure to hypoxic water in an air-breathing teleost, Channa maculata, Journal of Fish Biology 30, no.66 (Jun 1987): 749–760.https://doi.org/10.1111/j.1095-8649.1987.tb05804.xKen-ichi Yamamoto, Osamu Hirano, Yoichi Hara, Hiroshi Yoshikawa Respiration and avoidance reaction of a cyprinid fishPseudogobio esocinus under hypoxia, Japanese Journal of Ichthyology 33, no.44 (Feb 1987): 399–404.https://doi.org/10.1007/BF02904102D. K. O. Chan Cardiovascular, respiratory, and blood adjustments to hypoxia in the Japanese eel,Anguilla japonica, Fish Physiology and Biochemistry 2, no.1-41-4 (Oct 1986): 179–193.https://doi.org/10.1007/BF02264086Yasuhiro Morita, Thomas E. Finger Topographic and laminar organization of the vagal gustatory system in the goldfish,carassius auratus, The Journal of Comparative Neurology 238, no.22 (Aug 1985): 187–201.https://doi.org/10.1002/cne.902380206Stefan Nilsson 3 Innervation and Pharmacology of the Gills, (Jan 1984): 185–227.https://doi.org/10.1016/S1546-5098(08)60319-2Yasuhiro Morita, Takeshi Murakami, Hironobu Ito Cytoarchitecture and topographic projections of the gustatory centers in a teleost,Carassius carassius, The Journal of Comparative Neurology 218, no.44 (Aug 1983): 378–394.https://doi.org/10.1002/cne.902180403Pierre Laurent, Susanne Holmgren, Stefan Nilsson Nervous and humoral control of the fish heart: Structure and function, Comparative Biochemistry and Physiology Part A: Physiology 76, no.33 (Jan 1983): 525–542.https://doi.org/10.1016/0300-9629(83)90455-3M.G. Poxton, S.B. Allouse Water quality criteria for marine fisheries, Aquacultural Engineering 1, no.33 (Sep 1982): 153–191.https://doi.org/10.1016/0144-8609(82)90026-7P. R. Laming, C. W. Funston, D. Roberts, M. J. Armstrong Behavioural, physiological and morphological adaptations of the shanny ( Blennius pholis ) to the intertidal habitat, Journal of the Marine Biological Association of the United Kingdom 62, no.22 (May 2009): 329–338.https://doi.org/10.1017/S0025315400057313C.M. Ballintijn Neural Control of Respiration in Fishes and Mammals, (Jan 1982): 127–140.https://doi.org/10.1016/B978-0-08-027986-2.50017-7Richard J Wassersug, Rashel D Paul, Martin E Feder Cardio-respiratory synchrony in anuran larvae (Xenopus laevis, pachymedusa dacnicolor, and Rana berlandieri), Comparative Biochemistry and Physiology Part A: Physiology 70, no.33 (Jan 1981): 329–334.https://doi.org/10.1016/0300-9629(81)90186-9Yasuhiro Morita, Hironobu Ito, Hideo Masai Central gustatory paths in the crucian carp,carassius carassius, The Journal of Comparative Neurology 191, no.11 (May 1980): 119–132.https://doi.org/10.1002/cne.901910107G. F. Holeton Oxygen as an Environmental Factor of Fishes, (Jan 1980): 7–32.https://doi.org/10.1007/978-1-4899-3659-2_2C. Daxboeck, G.F. Holeton The effect of MS-222 on the hypoxic response of rainbow trout (salmo gairdneri), Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 65, no.22 (Jan 1980): 117–121.https://doi.org/10.1016/0306-4492(80)90031-3Kjell Johansen, Warren Burggren Cardiovascular Function in the Lower Vertebrates, (Jan 1980): 61–117.https://doi.org/10.1016/B978-0-12-119401-7.50009-8Barbara Kent, E. Converse Peirce Cardiovascular responses to changes in blo blood gases in dogfish shark, Squalus acanthias, Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 60, no.11 (Jan 1978): 37–44.https://doi.org/10.1016/0306-4492(78)90024-2David R. Jones, David J. Randall The Respiratory and Circulatory Systems During Exercise, (Jan 1978): 425–501.https://doi.org/10.1016/S1546-5098(08)60169-7I. G. Priede, P. Tytler Heart rate as a measure of metabolic rate in teleost fishes; Salmo gairdneri, Salmo trutta and Gadus morhua, Journal of Fish Biology 10, no.33 (Mar 1977): 231–242.https://doi.org/10.1111/j.1095-8649.1977.tb05128.xWilliam W. Reynolds Thermal equilibration rates in relation to heartbeat and ventilatory frequencies in largemouth blackbass, Micropterus salmoides, Comparative Biochemistry and Physiology Part A: Physiology 56, no.22 (Jan 1977): 195–201.https://doi.org/10.1016/0300-9629(77)90184-0M.F. Capra Cardio-respiratory relationships during “eupnoea” and respiratory arrhythmias in the Port Jackson shark, Heterodontus portusjacksoni, Comparative Biochemistry and Physiology Part A: Physiology 53, no.33 (Jan 1976): 259–262.https://doi.org/10.1016/S0300-9629(76)80032-1Matthew J. Weintraub The influence of activity level on bradycardia in trout (Salmo gairdneri) during hypoxia, Journal of Fish Biology 7, no.66 (Nov 1975): 791–796.https://doi.org/10.1111/j.1095-8649.1975.tb04650.xO.S. Bamford Oxygen recption in the rainbow trout (Salmo Gairdneri), Comparative Biochemistry and Physiology Part A: Physiology 48, no.11 (May 1974): 69–76.https://doi.org/10.1016/0300-9629(74)90854-8Daniel E Marvin, Dennis T Burton Cardiac and respiratory responses of rainbow trout, bluegills and brown bullhead catfish during rapid hypoxia and recovery under normoxic conditions, Comparative Biochemistry and Physiology Part A: Physiology 46, no.44 (Dec 1973): 755–765.https://doi.org/10.1016/0300-9629(73)90127-8P. N. Claridge, I. C. Potter, G. M. Hughes Circadian rhythms of activity, ventilatory frequency and heart rate in the adult River lamprey, Lampetra fluviatilis, Journal of Zoology 171, no.22 (Aug 2009): 239–250.https://doi.org/10.1111/j.1469-7998.1973.tb02218.xD.J. Randall, David R. Jones The effect of deafferentation of the pseudobranch on the respiratory response to hypoxia and hyperoxia in the trout (Salmo gairdneri), Respiration Physiology 17, no.33 (Apr 1973): 291–301.https://doi.org/10.1016/0034-5687(73)90004-2K. W. Watters, L. S. Smith Respiratory dynamics of the starry flounder Platichthys stellatus in response to low oxygen and high temperature, Marine Biology 19, no.22 (Mar 1973): 133–148.https://doi.org/10.1007/BF00353584E. W. Taylor, P. J. Butler, P. J. Sherlock The respiratory and cardiovascular changes associated with the emersion response ofCarcinus maenas (L.) during environmental hypoxia, at three different temperatures, Journal of Comparative Physiology 86, no.22 (Jan 1973): 95–115.https://doi.org/10.1007/BF00702531Edvard A. Hemmingsen, Everett L. Douglas Respiratory and circulatory responses in a hemoglobin-free fish, Chaenocephalusaceratus, to changes in temperature and oxygen tension, Comparative Biochemistry and Physiology Part A: Physiology 43, no.44 (Dec 1972): 1031–1043.https://doi.org/10.1016/0300-9629(72)90175-2E.W. Taylor, P.J. Butler Some observations on the relationship between heart beat and respiratory movements in the dogfish (Scyliorhinus canicula L.), Comparative Biochemistry and Physiology Part A: Physiology 39, no.22 (Jun 1971): 297–305.https://doi.org/10.1016/0300-9629(71)90086-7D.R. Jones, D.J. Randall, G.M. Jarman A graphical analysis of oxygen transfer in fish, Respiration Physiology 10, no.33 (Oct 1970): 285–298.https://doi.org/10.1016/0034-5687(70)90049-6D.J. Randall 7 Gas Exchange in Fish, (Jan 1970): 253–292.https://doi.org/10.1016/S1546-5098(08)60132-6G. Shelton 8 The Regulation of Breathing, (Jan 1970): 293–359.https://doi.org/10.1016/S1546-5098(08)60133-8Kenneth W. Spitzer, Daniel E. Marvin, Alan G. Heath The effect of temperature on the respiratory and cardiac response of the bluegill sunfish to hypoxia, Comparative Biochemistry and Physiology 30, no.11 (Jul 1969): 83–90.https://doi.org/10.1016/0010-406X(69)91299-7

Referência(s)
Altmetric
PlumX