Water Balance in a Carnivorous Desert Rodent the Grasshopper Mouse
1964; University of Chicago Press; Volume: 37; Issue: 3 Linguagem: Inglês
10.1086/physzool.37.3.30152396
ISSN1937-4267
AutoresKnut Schmidt‐Nielsen, Howard Haines,
Tópico(s)Physiological and biochemical adaptations
ResumoPrevious articleNext article No AccessWater Balance in a Carnivorous Desert Rodent the Grasshopper MouseK. Schmidt-Nielsen and H. B. HainesK. Schmidt-Nielsen Search for more articles by this author and H. B. Haines Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 37, Number 3Jul., 1964 Article DOIhttps://doi.org/10.1086/physzool.37.3.30152396 Views: 11Total views on this site Citations: 27Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1964 University of ChicagoPDF download Crossref reports the following articles citing this article:Harvey B. Lillywhite Feeding begets drinking: insights from intermittent feeding in snakes, Journal of Experimental Biology 220, no.1919 (Oct 2017): 3565–3570.https://doi.org/10.1242/jeb.163725Aldo A. Guevara-Carrizales, Jonathan Escobar-Flores, Roberto Martínez-Gallardo Marginal Record of the Southern Grasshopper Mouse Onychomys torridus in Baja California, México, Western North American Naturalist 72, no.33 (Nov 2012): 416–417.https://doi.org/10.3398/064.072.0316Soledad Albanese, María Ana Dacar, Ricardo A. Ojeda Unvarying diet of a Neotropical desert marsupial inhabiting a variable environment: the case of Thylamys pallidior, Acta Theriologica 57, no.22 (Sep 2011): 185–188.https://doi.org/10.1007/s13364-011-0057-6BRONWYN M. MCALLAN, WENDY WESTMAN, MATHEW S. CROWTHER, CHRISTOPHER R. DICKMAN Morphology, growth and reproduction in the Australian house mouse: differential effects of moderate temperatures, Biological Journal of the Linnean Society 94, no.11 (Apr 2008): 21–30.https://doi.org/10.1111/j.1095-8312.2008.00977.xGabriela B Diaz, Ricardo A Ojeda, Mariana Dacar Water conservation in the South American desert mouse opossum, Thylamys pusilla (Didelphimorphia, Didelphidae), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 130, no.22 (Sep 2001): 323–330.https://doi.org/10.1016/S1095-6433(01)00397-XFr�d�ric Fuminier, Bruno Sicard, Line Boissin-Agasse, Jean Boissin Seasonal changes in the hypothalamic vasopressinergic system of a wild Sahelian rodent, Taterillus petteri, Cell and Tissue Research 271, no.22 (Feb 1993): 309–316.https://doi.org/10.1007/BF00318617William M. Langley Relationship between attack and feeding in the insect predatory behavior of grasshopper mice, Aggressive Behavior 17, no.55 (Jan 1991): 275–284.https://doi.org/10.1002/1098-2337(1991)17:5<275::AID-AB2480170504>3.0.CO;2-TCOLLEEN T. DOWNS, M. R. PERRIN The effect of diet on water and energy turnover rates of four Gerbillurus species in captivity, Journal of Zoology 222, no.22 (Mar 2009): 215–233.https://doi.org/10.1111/j.1469-7998.1990.tb05673.xColleen T. Downs, M.R. Perrin Field water-turnover rates of three Gerbillurus species, Journal of Arid Environments 19, no.22 (Sep 1990): 199–208.https://doi.org/10.1016/S0140-1963(18)30818-8T. O. Sasidharan, S. P. Goyal, Phool Chand, P. K. Ghosh The effects of water deprivation and salt load on water conservation efficiency in two Indian desert gerbils, Journal of Comparative Physiology B 160, no.44 (Jul 1990): 413–422.https://doi.org/10.1007/BF01075673Laura J Fielden, M.R Perrin, G.C Hickman Water metabolism in the Namib Desert Golden Mole, Eremitalpa granti namibensis (Chrysochloridae), Comparative Biochemistry and Physiology Part A: Physiology 96, no.11 (Jan 1990): 227–234.https://doi.org/10.1016/0300-9629(90)90070-9S. P. Goyal, P. K. Ghosh, T. O. Sasidharan, Phool Chand Body water relations in two species of gerbil (Tatera indica indica andMeriones hurrianae) of the Indian desert, Journal of Comparative Physiology B 158, no.11 (Jan 1988): 127–134.https://doi.org/10.1007/BF00692736John H. Harris Microhabitat segregation in two desert rodent species: the relation of prey availability to diet, Oecologia 68, no.33 (Jan 1986): 417–421.https://doi.org/10.1007/BF01036749Donald P. Christian Water balance in Monodelphis domestica (didelphidae) from the semiarid Caatinga of Brazil, Comparative Biochemistry and Physiology Part A: Physiology 74, no.33 (Jan 1983): 665–669.https://doi.org/10.1016/0300-9629(83)90564-9 Stan L. Lindstedt Energetics and Water Economy of the Smallest Desert Mammal, Physiological Zoology 53, no.11 (Sep 2015): 82–97.https://doi.org/10.1086/physzool.53.1.30155777Brian K McNab Climatic adaptation in the energetics of heteromyid rodents, Comparative Biochemistry and Physiology Part A: Physiology 62, no.44 (Jan 1979): 813–820.https://doi.org/10.1016/0300-9629(79)90008-2Ursel Noll-Banholzer Body temperature, oxygen consumption, evaporative water loss and heart rate in the fennec, Comparative Biochemistry and Physiology Part A: Physiology 62, no.33 (Jan 1979): 585–592.https://doi.org/10.1016/0300-9629(79)90108-7Ursel Noll-Banholzer Water balance and kidney structure in the fennec, Comparative Biochemistry and Physiology Part A: Physiology 62, no.33 (Jan 1979): 593–597.https://doi.org/10.1016/0300-9629(79)90109-9John E Bassett, Jacob E Wiebers Urine concentration dynamics in the postprandial and the fasting Myotis lucifugus lucifugus, Comparative Biochemistry and Physiology Part A: Physiology 64, no.33 (Jan 1979): 373–379.https://doi.org/10.1016/0300-9629(79)90457-2Michael A Mares Water economy and salt balance in a south american desert rodent, Eligmodontia typus, Comparative Biochemistry and Physiology Part A: Physiology 56, no.33 (Jan 1977): 325–332.https://doi.org/10.1016/0300-9629(77)90245-6 Marjorie L. Reaka , and Kenneth B. Armitage The Water Economy of Harvest Mice from Xeric and Mesic Environments, Physiological Zoology 49, no.33 (Sep 2015): 307–327.https://doi.org/10.1086/physzool.49.3.30155690Ursel Banholzer Water balance, metabolism, and heart rate in the fennec, Die Naturwissenschaften 63, no.44 (Apr 1976): 202–203.https://doi.org/10.1007/BF00624233Mark S Brownfield, Bruce A Wunder Relative medullary area: A new structural index for estimating urinary concentrating capacity of mammals, Comparative Biochemistry and Physiology Part A: Physiology 55, no.11 (Jan 1976): 69–75.https://doi.org/10.1016/0300-9629(76)90125-0Kenneth N. Geluso Urine concentration cycles of insectivorous bats in the laboratory, Journal of Comparative Physiology ? B 99, no.44 (Jan 1975): 309–319.https://doi.org/10.1007/BF00710371Walter G. Whitford, Mark I. Conley Oxygen consumption and water metabolism in a carnivorous mouse, Comparative Biochemistry and Physiology Part A: Physiology 40, no.33 (Nov 1971): 797–803.https://doi.org/10.1016/0300-9629(71)90265-9 Roger E. Carpenter Structure and Function of the Kidney and the Water Balance of Desert Bats, Physiological Zoology 42, no.33 (Sep 2015): 288–302.https://doi.org/10.1086/physzool.42.3.30155492George A. Bartholomew, William R. Dawson TEMPERATURE REGULATION IN DESERT MAMMALS, (Jan 1968): 395–421.https://doi.org/10.1016/B978-1-4831-9868-2.50016-5
Referência(s)