The Metabolism of Marsh Crabs under Conditions of Reduced Oxygen Pressure

1967; University of Chicago Press; Volume: 40; Issue: 1 Linguagem: Inglês

10.1086/physzool.40.1.30152440

ISSN

1937-4267

Autores

John M. Teal, Francis G. Carey,

Tópico(s)

Physiological and biochemical adaptations

Resumo

Previous articleNext article No AccessThe Metabolism of Marsh Crabs under Conditions of Reduced Oxygen PressureJohn M. Teal and Francis G. CareyJohn M. Teal and Francis G. CareyPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by Volume 40, Number 1Jan., 1967 Article DOIhttps://doi.org/10.1086/physzool.40.1.30152440 Views: 12Total views on this site Citations: 66Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1967 The University of ChicagoPDF download Crossref reports the following articles citing this article:Nina Bednaršek, Brendan R. Carter, Ryan M. McCabe, Richard A. Feely, Evan Howard, Francisco P. Chavez, Meredith Elliott, Jennifer L. Fisher, Jaime Jahncke, Zach Siegrist Pelagic calcifiers face increased mortality and habitat loss with warming and ocean acidification, Ecological Applications 32, no.77 (Jul 2022).https://doi.org/10.1002/eap.2674Mariana V. Capparelli, John C. McNamara, Carl L. Thurman, Rosela Pérez-Ceballos, Mario A. Gómez-Ponce, José-Gilberto Cardoso-Mohedano, Gabriel M. Moulatlet Can tolerances of multiple stressors and calculated safety margins in fiddler crabs predict responses to extreme environmental conditions resulting from climate change?, Marine Pollution Bulletin 179 (Jun 2022): 113674.https://doi.org/10.1016/j.marpolbul.2022.113674Garett Joseph Patrick Allen, Min-Chen Wang, Yung-Che Tseng, Dirk Weihrauch Effects of emersion on acid–base regulation, osmoregulation, and nitrogen physiology in the semi-terrestrial mangrove crab, Helice formosensis, Journal of Comparative Physiology B 191, no.33 (Feb 2021): 455–468.https://doi.org/10.1007/s00360-021-01354-0Mariana V. Capparelli, Carl L. Thurman, Paloma Gusso Choueri, Denis Moledo de Souza Abessa, Mayana Karoline Fontes, Caio Rodrigues Nobre, John Campbell McNamara Survival strategies on a semi-arid island: submersion and desiccation tolerances of fiddler crabs from the Galapagos Archipelago, Marine Biology 168, no.11 (Jan 2021).https://doi.org/10.1007/s00227-020-03807-6Jonathan C. Wright, Kevin Ting Respiratory physiology of the Oniscidea: Aerobic capacity and the significance of pleopodal lungs, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 145, no.22 (Oct 2006): 235–244.https://doi.org/10.1016/j.cbpa.2006.06.020Enmin Zou, Ben Stueben Acute exposure to naphthalene reduces oxyregulating capacity of the brown shrimp, Penaeus aztecus, subjected to progressive hypoxia, Marine Biology 149, no.66 (May 2006): 1411–1415.https://doi.org/10.1007/s00227-006-0294-4Jacob Tørring Damsgaard, Kim N. Mouritsen, K. Thomas Jensen Surface activity of Corophium volutator: A role for parasites?, Journal of Sea Research 54, no.22 (Aug 2005): 176–184.https://doi.org/10.1016/j.seares.2005.04.001Ubirajara O. de Oliveira, Alex Sander da Rosa Araújo, Adriane Belló-Klein, Roselis S.M. da Silva, Luiz Carlos Kucharski Effects of environmental anoxia and different periods of reoxygenation on oxidative balance in gills of the estuarine crab Chasmagnathus granulata, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 140, no.11 (Jan 2005): 51–57.https://doi.org/10.1016/j.cbpc.2004.09.026Mark D. Ahern, Steve Morris Respiratory, acid–base and metabolic responses of the freshwater crayfish Cherax destructor to lead contamination, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 124, no.22 (Oct 1999): 105–111.https://doi.org/10.1016/S1095-6433(99)00101-4A. Ingvarsdóttir, D.F. Houlihan, M.R. Heath, S.J. Hay Seasonal changes in respiration rates of copepodite stage V Calanus finmarchicus (Gunnerus), Fisheries Oceanography 8, no.s1s1 (Apr 2003): 73–83.https://doi.org/10.1046/j.1365-2419.1999.00002.xRüdiger J. Paul, Michael Colmorgen, Ralph Pirow, Yi-Horn Chen, Ming-Cheng Tsai Systemic and metabolic responses in Daphnia magna to anoxia, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 120, no.33 (Jul 1998): 519–530.https://doi.org/10.1016/S1095-6433(98)10062-4FIORENZA MICHELI Effects of experience on crab foraging in a mobile and a sedentary species, Animal Behaviour 53, no.66 (Jun 1997): 1149–1159.https://doi.org/10.1006/anbe.1996.0349Enmin Zou, Nanshan Du, Wei Lai The effects of severe hypoxia on lactate and glucose concentrations in the blood of the Chinese freshwater crab Eriocheir sinensis (Crustacea: Decapoda), Comparative Biochemistry and Physiology Part A: Physiology 114, no.22 (Jun 1996): 105–109.https://doi.org/10.1016/0300-9629(95)02101-9S.J. Anderson, A.C. Taylor, R.J.A. Atkinson Anaerobic metabolism during anoxia in the burrowing shrimp Calocaris macandreae Bell (Crustacea: Thalassinidea), Comparative Biochemistry and Physiology Part A: Physiology 108, no.44 (Aug 1994): 515–522.https://doi.org/10.1016/0300-9629(94)90335-2M. K. Grieshaber, I. Hardewig, U. Kreutzer, H.-O. Pörtner Physiological and metabolic responses to hypoxia in invertebrates, (Jun 2005): 43–147.https://doi.org/10.1007/BFb0030909A.D. Hill, A.C. Taylor, R.H.C. Strang Physiological and metabolic responses of the shore crab Carcinus maenas (L.) during environmental anoxia and subsequent recovery, Journal of Experimental Marine Biology and Ecology 150, no.11 (Jul 1991): 31–50.https://doi.org/10.1016/0022-0981(91)90104-5A.D. Hill, R.H.C. Strang, A.C. Taylor Radioisotope studies of the energy metabolism of the shore crab Carcinus maenas (L.) during environmental anoxia and recovery, Journal of Experimental Marine Biology and Ecology 150, no.11 (Jul 1991): 51–62.https://doi.org/10.1016/0022-0981(91)90105-6J. Lin Mud crab predation on ribbed mussels in salt marshes, Marine Biology 107, no.11 (Feb 1990): 103–109.https://doi.org/10.1007/BF01313247J. I. Spicer, A. D. Hill, A. C. Taylor, R. H. C. Strang Effect of aerial exposure on concentrations of selected metabolites in blood of the Norwegian lobsterNephrops norvegicus (Crustacea: Nephropidae), Marine Biology 105, no.11 (Feb 1990): 129–135.https://doi.org/10.1007/BF01344278Richard G. Hartnoll Eco-Ethology of Mangroves, (Jan 1988): 477–489.https://doi.org/10.1007/978-1-4899-3737-7_30M. K. Grieshaber, U. Kreutzer, H. O. Pörtner Critical PO2 of Euryoxic Animals, (Jan 1988): 37–48.https://doi.org/10.1007/978-3-642-83444-8_3A. C. Taylor, J. I. Spicer Metabolic responses of the prawns Palaemon elegans and P. serratus (Crustacea: Decapoda) to acute hypoxia and anoxia, Marine Biology 95, no.44 (Sep 1987): 521–530.https://doi.org/10.1007/BF00393095W.J Van Aardt, C.T Wolmarans Effects of anoxia on the haemolymph physiology and lactate concentrations in the freshwater crab Potamon warreni calman, Comparative Biochemistry and Physiology Part A: Physiology 88, no.44 (Jan 1987): 671–675.https://doi.org/10.1016/0300-9629(87)90681-5D.J Agnew, M.B Jones Metabolic adaptations of Gammarus duebeni liljeborg (Crustacea, Amphipoda) to hypoxia in a sewage treatment plant, Comparative Biochemistry and Physiology Part A: Physiology 84, no.33 (Jan 1986): 475–478.https://doi.org/10.1016/0300-9629(86)90351-8Gerd Gäde, Manfred K. Grieshaber Pyruvate reductases catalyze the formation of lactate and opines in anaerobic invertebrates, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 83, no.22 (Jan 1986): 255–272.https://doi.org/10.1016/0305-0491(86)90364-0D.F. Houlihan, E. Mathers Effects of captivity and exercise on the energetics of locomotion and muscle of Carcinus maenas (L.), Journal of Experimental Marine Biology and Ecology 92, no.2-32-3 (Nov 1985): 125–142.https://doi.org/10.1016/0022-0981(85)90092-9J. L. Albert, W. R. Ellington Patterns of energy metabolism in the stone crab, Menippe mercenaria , during severe hypoxia and subsequent recovery, Journal of Experimental Zoology 234, no.22 (May 2005): 175–183.https://doi.org/10.1002/jez.1402340202D.J. Agnew, A.C. Taylor The effect of oxygen tension on the physiology and distribution of Echinogammarus pirloti (Sexton & Spooner) and E. obtusatus (Dahl) (Crustacea:Amphipoda), Journal of Experimental Marine Biology and Ecology 87, no.22 (Apr 1985): 169–190.https://doi.org/10.1016/0022-0981(85)90089-9Alastair J Innes Aerobic scope for activity of the burrowing mantis shrimp Heterosquilla tricarinata at low environmental oxygen tensions, Comparative Biochemistry and Physiology Part A: Physiology 81, no.44 (Jan 1985): 827–832.https://doi.org/10.1016/0300-9629(85)90914-4Robert J. Full, Clyde F. Herreid Fiddler Crab Exercise: the Energetic Cost of Running Sideways, Journal of Experimental Biology 109, no.11 (Mar 1984): 141–161.https://doi.org/10.1242/jeb.109.1.141Hein R. Skjoldal, Ulf Bmstedt, Jette Klinken, Andrew Laing Changes with time after capture in the metabolic activity of the carnivorous copepod Euchaeta norvegica Boeck, Journal of Experimental Marine Biology and Ecology 83, no.33 (Jan 1984): 195–210.https://doi.org/10.1016/S0022-0981(84)80001-5Mario M. Pamatmat Measuring aerobic and anaerobic metabolism of benthic infauna under natural conditions, Journal of Experimental Zoology 228, no.33 (May 2005): 405–413.https://doi.org/10.1002/jez.1402280303W. Ross Ellington The recovery from anaerobic metabolism in invertebrates, Journal of Experimental Zoology 228, no.33 (May 2005): 431–444.https://doi.org/10.1002/jez.1402280305Daniel G. Spotts Oxygen consumption and whole body lactate accumulation during progressive hypoxia in the tropical freshwater prawn, Macrobrachium rosenbergii (de Man), Journal of Experimental Zoology 226, no.11 (Jun 2005): 19–27.https://doi.org/10.1002/jez.1402260104E. W. Taylor Control and Co-Ordination of Ventilation and Circulation in Crustaceans: Responses to Hypoxia and Exercise, Journal of Experimental Biology 100, no.11 (Oct 1982): 289–319.https://doi.org/10.1242/jeb.100.1.289Ernst Zebe Anaerobic metabolism in Upogebia pugettensis and Callianassa californiensis (crustacea, thalassinidea), Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 72, no.44 (Jan 1982): 613–617.https://doi.org/10.1016/0305-0491(82)90514-4F. John Vernberg Benthic Macrofauna, (Jan 1981): 179–230.https://doi.org/10.1016/B978-0-12-718280-3.50011-7G. K. Kulkarni, P. K. Joshi Some aspects of respiratory metabolism of a penaeid prawn, Penaeus japonicus (Bate) (Crustacea, Decapoda, Penaeidae), Hydrobiologia 75, no.11 (Oct 1980): 27–32.https://doi.org/10.1007/BF00006558C.R Bridges, A.R Brand The effect of hypoxia on oxygen consumption and blood lactate levels of some marine crustacea, Comparative Biochemistry and Physiology Part A: Physiology 65, no.44 (Jan 1980): 399–409.https://doi.org/10.1016/0300-9629(80)90051-1Clyde F. Herreid Hypoxia in invertebrates, Comparative Biochemistry and Physiology Part A: Physiology 67, no.33 (Jan 1980): 311–320.https://doi.org/10.1016/S0300-9629(80)80002-8N. H. Khayrallah, A. M. Jones The ecology of Bathyporeia pilosa (Amphipoda: Haustoriidae) in the Tay Estuary. II. Factors affecting the micro-distribution, Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 78, no.3-43-4 (Dec 2011): s121–s130.https://doi.org/10.1017/S0269727000003079A. W. Pritchard, S. Eddy Lactate formation in Callianassa californiensis and Upogebia pugettensis (Crustacea: Thalassinidea), Marine Biology 50, no.33 (Jan 1979): 249–253.https://doi.org/10.1007/BF00394206M. M. Pamatmat Anaerobic heat production of bivalves (Polymesoda caroliniana andModiolus demissus) in relation to temperature, body size, and duration of anoxia, Marine Biology 53, no.33 (Jan 1979): 223–229.https://doi.org/10.1007/BF00952430AUSTIN B. WILLIAMS, THOMAS W. DUKE Crabs (Arthropoda: Crustacea: Decapoda: Brachyura), (Jan 1979): 171–233.https://doi.org/10.1016/B978-0-12-328440-2.50012-7M. Z. Husain, M. A. Alikhan A Comparative Study of the Respiratory Metabolism in Porcellio laevis (Lat.) and Armadillidium vulgare (Lat.): Response to Temperature, Photoperiod and Oxygen Concentration, Archives Internationales de Physiologie et de Biochimie 87, no.44 (Sep 2008): 697–710.https://doi.org/10.3109/13813457909070530M. M. Pamatmat Oxygen uptake and heat production in a metabolic conformer (Littorina irrorata) and a metabolic regulator (Uca pugnax), Marine Biology 48, no.44 (Jan 1978): 317–325.https://doi.org/10.1007/BF00391635Thomas G. Wolcott Ecological rôle of ghost crabs, Ocypode quadrata (Fabricius) on an ocean beach: Scavengers or predators?, Journal of Experimental Marine Biology and Ecology 31, no.11 (Jan 1978): 67–82.https://doi.org/10.1016/0022-0981(78)90137-5Hein Rune Skjoldal, Torgeir Baakke ANAEROBIC METABOLISM OF THE SCAVENGING ISOPOD CIROLANA BOREALIS LILLJEBORG. ADENINE NUCLEOTIDES, (Jan 1978): 67–74.https://doi.org/10.1016/B978-0-08-021548-8.50015-2S. L. Vargo, A. N. Sastry Acute temperature and low dissolved oxygen tolerances of brachyuran crab (Cancer irroratus) larvae, Marine Biology 40, no.22 (Jan 1977): 165–171.https://doi.org/10.1007/BF00396263G. Trausch Glycolytic activity of the claw and tail muscle homogenates of the lobster, Homarus vulgaris, Biochemical Systematics and Ecology 4, no.11 (Apr 1976): 51–54.https://doi.org/10.1016/0305-1978(76)90010-7K. I. Miller, A. W. Pritchard, P. S. Rutledge Respiratory regulation and the role of the blood in the burrowing shrimp Callianassa californiensis (Decapoda: Thalassinidae), Marine Biology 36, no.33 (Jan 1976): 233–242.https://doi.org/10.1007/BF00389284C. Thompson, C. H. Page Nervous control of respiration: oxygen-sensitive elements in the prosoma of Limulus polyphemus, Journal of Experimental Biology 62, no.33 (Jun 1975): 545–554.https://doi.org/10.1242/jeb.62.3.545K. M. Veerannan Respiratory metabolism of crabs from marine and estuarine habitats: an interspecific comparison, Marine Biology 26, no.11 (Jul 1974): 35–43.https://doi.org/10.1007/BF00389084Nicholas H. Whiting, Gerald A. Moshiri Certain organism-substrate relationships affecting the distribution of Uca minax (Crustacea: Decapoda), Hydrobiologia 44, no.44 (May 1974): 481–493.https://doi.org/10.1007/BF00036312J.E. Dendinger, F.C. Schatzlein Carbohydrate metabolism in the steroid shore crab, Pachygrapsus crassipes—II. Glycolytic rates of muscle, gill and hepatopancreas, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 46, no.44 (Dec 1973): 699–708.https://doi.org/10.1016/0305-0491(73)90114-4A.D. Ansell Changes in oxygen consumption, heart rate and ventilation accompanying starvation in the decapod crustacean cancer pagurus, Netherlands Journal of Sea Research 7 (Aug 1973): 455–475.https://doi.org/10.1016/0077-7579(73)90066-5Ronald E. Young Responses to respiratory stress in relation to blood pigment affinity in Goniopsis cruentata (Latreille) and (to a lesser extent) in Cardisoma guanhumi Latreille, Journal of Experimental Marine Biology and Ecology 11, no.11 (Apr 1973): 91–102.https://doi.org/10.1016/0022-0981(73)90020-8Ronald E. Young The physiological ecology of haemocyanin in some selected crabs. I. The characteristics of haemocyamn in a tropical population of the blue crab Callinectes sapidus Rathbun, Journal of Experimental Marine Biology and Ecology 10, no.33 (Dec 1972): 183–192.https://doi.org/10.1016/0022-0981(72)90072-XWinona B. Vernberg, F. John Vernberg The Intertidal Zone, (Jan 1972): 58–160.https://doi.org/10.1007/978-3-642-65334-6_3Winona B. Vernberg, F. John Vernberg Coastal and Open Ocean Waters, (Jan 1972): 232–300.https://doi.org/10.1007/978-3-642-65334-6_5Gerald A. Moshiri, Charles R. Goldman, Donald R. Mull, Gordon L. Godshalk, John A. Coil Respiratory metabolism in pacifastacus leniusculus (Dana) (crustacea: decapoda) as related to its ecology, Hydrobiologia 37, no.22 (Mar 1971): 183–195.https://doi.org/10.1007/BF00015566J. C. Gamble Anaerobic Survival of the Crustaceans Corophium Volutator, C. Arenarium and Tanais Chevreuxi, Journal of the Marine Biological Association of the United Kingdom 50, no.33 (May 2009): 657–671.https://doi.org/10.1017/S0025315400004938 Gerald A. Moshiri , Charles R. Goldman , Gordon L. Godshalk , and Donald R. Mull The Effects of Variations in Oxygen Tension on Certain Aspects of Respiratory Metabolism in Pacifastacus leniusculus (Dana) (Crustacea: Decapoda), Physiological Zoology 43, no.11 (Sep 2015): 23–29.https://doi.org/10.1086/physzool.43.1.30152482Lyle Hohnke, Bradley T. Scheer Carbohydrate Metabolism in Crustaceans, (Jan 1970): 147–166.https://doi.org/10.1016/B978-0-12-395538-8.50032-XRobert E. Loveland, David S.K. Chu Oxygen consumption and water movement in Mercenaria mercenaria, Comparative Biochemistry and Physiology 29, no.11 (Apr 1969): 173–184.https://doi.org/10.1016/0010-406X(69)91733-2Bengt-Owe Jansson Quantitative and experimental studies of the interstitial fauna in four Swedish sandy beaches, Ophelia 5, no.11 (May 1968): 1–71.https://doi.org/10.1080/00785326.1968.10409625

Referência(s)
Altmetric
PlumX