Artigo Revisado por pares

Covalent Attachment of Mechanoresponsive Luminescent Micelles to Glasses and Polymers in Aqueous Conditions

2014; American Chemical Society; Volume: 136; Issue: 11 Linguagem: Inglês

10.1021/ja412670g

ISSN

1943-2984

Autores

Yoshimitsu Sagara, Toru Komatsu, Tasuku Ueno, Kenjiro Hanaoka, Takashi Kato, Tetsuo Nagano,

Tópico(s)

Dendrimers and Hyperbranched Polymers

Resumo

Covalent attachment of mechanoresponsive luminescent organic or organometallic compounds to other materials is a promising approach to develop a wide variety of mechanoresponsive luminescent materials. Here, we report covalently linkable mechanoresponsive micelles that change their photoluminescence from yellow to green in response to mechanical stimulation under aqueous conditions. These micelles are composed of a dumbbell-shaped amphiphilic pyrene derivative having amine groups at the peripheral positions of its dendrons. Using a well-established cross-linker, the micelles were covalently linked via their peripheral amine groups to the surface of glass beads, polylactic acid (PLA) beads, and living cells under aqueous conditions. Vortexing of glass beads bearing the micelles in a glass vial filled with water caused a photoluminescence color change from yellow to green. PLA beads bearing the micelles showed no change in photoluminescence color under the same conditions. We ascribe this result to the lower density and stiffness of the PLA beads, because the color of the PLA beads changed on vortexing in the presence of bare glass beads. HeLa cells and HL-60 cells bearing the micelles showed no obvious photoluminescence color change under vortexing. The structure, photophysical properties, and mechanism of photoluminescence color change of the micellar assemblies were examined.

Referência(s)