Respiration and Water Loss at the Higher Temperatures in the Desert Iguana, Dipsosaurus dorsalis

1960; University of Chicago Press; Volume: 33; Issue: 2 Linguagem: Inglês

10.1086/physzool.33.2.30152300

ISSN

1937-4267

Autores

James R. Templeton,

Tópico(s)

Bat Biology and Ecology Studies

Resumo

Previous articleNext article No AccessRespiration and Water Loss at the Higher Temperatures in the Desert Iguana, Dipsosaurus dorsalisJames R. TempletonJames R. Templeton Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 33, Number 2Apr., 1960 Article DOIhttps://doi.org/10.1086/physzool.33.2.30152300 Views: 2Total views on this site Citations: 39Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1960 University of ChicagoPDF download Crossref reports the following articles citing this article:Caleb L. Loughran, Blair O. Wolf The functional significance of panting as a mechanism of thermoregulation and its relationship to the critical thermal maxima in lizards, The Journal of Experimental Biology 223, no.1717 (Aug 2020): jeb224139.https://doi.org/10.1242/jeb.224139William Ruger Porter, Jayc C. Sedlmayr, Lawrence M. Witmer Vascular patterns in the heads of crocodilians: blood vessels and sites of thermal exchange, Journal of Anatomy 229, no.66 (Sep 2016): 800–824.https://doi.org/10.1111/joa.12539Joanna K. Carpenter, Joanne M. Monks, Nicola Nelson The effect of two glyphosate formulations on a small, diurnal lizard (Oligosoma polychroma), Ecotoxicology 25, no.33 (Feb 2016): 548–554.https://doi.org/10.1007/s10646-016-1613-2Anthony L. Gilbert, Matthew S. Lattanzio, Daniel E. Naya Ontogenetic Variation in the Thermal Biology of Yarrow's Spiny Lizard, Sceloporus jarrovii, PLOS ONE 11, no.22 (Feb 2016): e0146904.https://doi.org/10.1371/journal.pone.0146904William Ruger Porter, Lawrence M. Witmer, Izumi Sugihara Vascular Patterns in Iguanas and Other Squamates: Blood Vessels and Sites of Thermal Exchange, PLOS ONE 10, no.1010 (Oct 2015): e0139215.https://doi.org/10.1371/journal.pone.0139215Gina Galli, E. W. Taylor, Tobias Wang The cardiovascular responses of the freshwater turtle Trachemys scripta to warming and cooling, Journal of Experimental Biology 207, no.99 (Apr 2004): 1471–1478.https://doi.org/10.1242/jeb.00912Dale F. DeNardo, Tricia E. Zubal, Ty C.M. Hoffman Cloacal evaporative cooling: a previously undescribed means of increasing evaporative water loss at higher temperatures in a desert ectotherm, the Gila monster Heloderma suspectum, Journal of Experimental Biology 207, no.66 (Feb 2004): 945–953.https://doi.org/10.1242/jeb.00861Robert Kaufmann, F.Harvey Pough The effect of temperature upon the efficiency of assimilation of preformed water by the desert iguana (Dipsosaurus dorsalis), Comparative Biochemistry and Physiology Part A: Physiology 72, no.11 (Jan 1982): 221–224.https://doi.org/10.1016/0300-9629(82)90036-6P.E Hertz, A Arce-Hernandez, J Ramirez-Vazquez, W Tirado-Rivera, L Vazquez-Vives Geographical variation of heat sensitivity and water loss rates in the tropical lizard, Anolis gundlachi, Comparative Biochemistry and Physiology Part A: Physiology 62, no.44 (Jan 1979): 947–953.https://doi.org/10.1016/0300-9629(79)90033-1Robert H Harwood The effect of temperature on the digestive efficiency of three species of lizards, cnemidophorus tigris, and Sceloporus occidentalis, Comparative Biochemistry and Physiology Part A: Physiology 63, no.33 (Jan 1979): 417–433.https://doi.org/10.1016/0300-9629(79)90613-3Gary S Thorpe, John E Kontogiannis Evaporative water loss in isolated populations of the coastal side-blotched lizard Uta stansburiana hesperis, Comparative Biochemistry and Physiology Part A: Physiology 57, no.11 (Jan 1977): 133–137.https://doi.org/10.1016/0300-9629(77)90363-2William R. Dawson On the Physiological Significance of the Preferred Body Temperatures of Reptiles, (Jan 1975): 443–473.https://doi.org/10.1007/978-3-642-87810-7_25H. Heatwole Voluntary submergence times of marine snakes, Marine Biology 32, no.22 (Jan 1975): 205–213.https://doi.org/10.1007/BF00388513Harold Heatwole, Bruce T Firth, Grahame J.W Webb Panting thresholds of lizards—I. Some methodological and internal influences on the panting threshold of an agamid, Amphibolurus muricatus, Comparative Biochemistry and Physiology Part A: Physiology 46, no.44 (Dec 1973): 799–826.https://doi.org/10.1016/0300-9629(73)90130-8 Caroline L. Whitfield , and Robert L. Livezey Thermoregulatory Patterns in Lizards, Physiological Zoology 46, no.44 (Sep 2015): 285–296.https://doi.org/10.1086/physzool.46.4.30155611W. P. Porter, J. W. Mitchell, W. A. Beckman, C. B. DeWitt Behavioral implications of mechanistic ecology, Oecologia 13, no.11 (Jan 1973): 1–54.https://doi.org/10.1007/BF00379617Larry D. Munsey Water loss in five species of lizards, Comparative Biochemistry and Physiology Part A: Physiology 43, no.44 (Dec 1972): 781–794.https://doi.org/10.1016/0300-9629(72)90147-8Eugene C. Crawford Brain and Body Temperatures in a Panting Lizard, Science 177, no.40474047 (Aug 1972): 431–433.https://doi.org/10.1126/science.177.4047.431 G. J. W. Webb , C. R. Johnson , and B. T. Firth Head-Body Temperature Differences in Lizards, Physiological Zoology 45, no.22 (Sep 2015): 130–142.https://doi.org/10.1086/physzool.45.2.30155577Kenneth A. Nagy Water and electrolyte budgets of a free-living desert lizard,Sauromalus obesus, Journal of Comparative Physiology 79, no.11 (Jan 1972): 39–62.https://doi.org/10.1007/BF00693617Wesley W. Weathers Influence of water vapor pressure on the apparent capacity for physiological thermoregulation in reptiles, Journal of Comparative Physiology 81, no.33 (Jan 1972): 301–308.https://doi.org/10.1007/BF00693634G.K. Snyder Adaptive value of a reduced respiratory metabolism in a lizard. A unique case, Respiration Physiology 13, no.11 (Oct 1971): 90–101.https://doi.org/10.1016/0034-5687(71)90066-1S. A. RICHARDS THE BIOLOGY AND COMPARATIVE PHYSIOLOGY OF THERMAL PANTING, Biological Reviews 45, no.22 (May 1970): 223–261.https://doi.org/10.1111/j.1469-185X.1970.tb01631.xK.H. Naifeh, S.E. Huggins, H.E. Hoff, T.W. Hugg, R.E. Norton Respiratory patterns in crocodilian reptiles, Respiration Physiology 9, no.11 (Apr 1970): 21–42.https://doi.org/10.1016/0034-5687(70)90003-4David M. Gates Animal climates (where animals must live), Environmental Research 3, no.22 (Mar 1970): 132–144.https://doi.org/10.1016/0013-9351(70)90011-3 Mary K. Lashbrook , and Robert L. Livezey Effects of Photoperiod on Heat Tolerance in Sceloporus occidentalis occidentalis, Physiological Zoology 43, no.11 (Sep 2015): 38–46.https://doi.org/10.1086/physzool.43.1.30152484Frederick D. Kemp Thermal reinforcement and thermoregulatory behaviour in the lizard Dipsosaurus dorsalis: An operant technique, Animal Behaviour 17 (Aug 1969): 446–451.https://doi.org/10.1016/0003-3472(69)90145-6C.O'Neil Krekorian, Velma J. Vance, Ann M. Richardson Temperature-dependent maze learning in the desert iguana, Dipsosaurus dorsalis, Animal Behaviour 16, no.44 (Nov 1968): 429–436.https://doi.org/10.1016/0003-3472(68)90036-5François Morel, Serge Jard Actions and Functions of the Neurohypophysial Hormones and Related Peptides in Lower Vertebrates, (Jan 1968): 655–716.https://doi.org/10.1007/978-3-642-46127-9_13Wilbur W. Mayhew BIOLOGY OF DESERT AMPHIBIANS AND REPTILES, (Jan 1968): 195–356.https://doi.org/10.1016/B978-1-4831-9868-2.50014-1 Calvin B. DeWitt Precision of Thermoregulation and Its Relation to Environmental Factors in the Desert Iguana, Dipsosaurus dorsalis, Physiological Zoology 40, no.11 (Sep 2015): 49–66.https://doi.org/10.1086/physzool.40.1.30152438Dennis L. Claussen Studies of water loss in two species of lizards, Comparative Biochemistry and Physiology 20, no.11 (Jan 1967): 115–130.https://doi.org/10.1016/0010-406X(67)90728-1P. J. Bentley, Knut Schmidt-Nielsen Permeability to water and sodium of the crocodilian,Caiman sclerops, Journal of Cellular and Comparative Physiology 66, no.33 (Dec 1965): 303–309.https://doi.org/10.1002/jcp.1030660307J. L. Cloudsley‐Thompson Rhythmic activity, temperature‐tolerance, water‐relations and mechanism of heat death in a tropical skink and gecko, Proceedings of the Zoological Society of London 146, no.11 (Jul 2010): 55–69.https://doi.org/10.1111/j.1469-7998.1965.tb05200.xJames R. Templeton Cardiovascular responses during buccal and thoracic respiration in the lizard, Sauromalus obesus, Comparative Biochemistry and Physiology 11, no.11 (Jan 1964): 31–43.https://doi.org/10.1016/0010-406X(64)90093-3 William R. Dawson , and James R. Templeton Physiological Responses to Temperature in the Lizard Crotaphytus collaris, Physiological Zoology 36, no.33 (Sep 2015): 219–236.https://doi.org/10.1086/physzool.36.3.30152308 James R. Templeton , and William R. Dawson Respiration in the Lizard Crotaphytus collaris, Physiological Zoology 36, no.22 (Sep 2015): 104–121.https://doi.org/10.1086/physzool.36.2.30155435Robert M. Chew, Arthur E. Dammann Evaporative Water Loss of Small Vertebrates, as Measured with an Infrared Analyzer, Science 133, no.34503450 (Feb 1961): 384–385.https://doi.org/10.1126/science.133.3450.384 ADDENDUM, Biological Reviews 36, no.11 (Feb 1961): 28–31.https://doi.org/10.1111/j.1469-185X.1961.tb01431.x

Referência(s)
Altmetric
PlumX