Application of the Converse Bergmann Principle to the Carabid Beetle, Dicaelus purpuratus
1949; University of Chicago Press; Volume: 22; Issue: 4 Linguagem: Inglês
10.1086/physzool.22.4.30152061
ISSN1937-4267
Autores Tópico(s)Physiological and biochemical adaptations
ResumoPrevious articleNext article No AccessApplication of the Converse Bergmann Principle to the Carabid Beetle, Dicaelus purpuratusOrlando ParkOrlando ParkPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by Volume 22, Number 4Oct., 1949 Article DOIhttps://doi.org/10.1086/physzool.22.4.30152061 PermissionsRequest permissions Views: 12Total views on this site Citations: 36Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-2023) and Ecological and Evolutionary Physiology (2024-present). PDF download Crossref reports the following articles citing this article:Savanna Carlyn Barry, Matthew Denman Smith, Berlynna Heres, Travis Michael Thomas, Brittany J. Hall‐Scharf, H. Jane Brockmann Water temperature and season length interact to explain a rare non‐linear ecogeographic cline in body size, Journal of Biogeography 51, no.11 (Sep 2023): 61–75.https://doi.org/10.1111/jbi.14730Ahmet POLAT A study on morphological variations of male Helophorus (Helophorus) aquaticus (L., 1758) (Coleoptera: Helophoridae) in Türkiye, Turkish Journal of Entomology 47, no.11 (Apr 2023): 59–72.https://doi.org/10.16970/entoted.1192141Alessa Wehner, Nils Hein, Niklas Beckers, Svenja Dobbert, Roland Pape, Jörg Löffler Early snow melt and diverging thermal constraints control body size in arctic–alpine spiders, Biological Journal of the Linnean Society 138, no.11 (Nov 2022): 1–13.https://doi.org/10.1093/biolinnean/blac127Barbora Mikitová, Martina Šemeláková, Ľubomir Panigaj Wing morphology and eyespot pattern of Erebia medusa (Lepidoptera, Nymphalidae) vary along an elevation gradient in the Carpathian Mountains, Nota Lepidopterologica 45 (Jul 2022): 233–250.https://doi.org/10.3897/nl.45.68624Takashi Koyama, Catarina Nunes, Hesper Khong, Yuichiro Suzuki Adaptive Meaning of Early Life Experience in Species that Go Through Metamorphosis, (Feb 2022): 51–95.https://doi.org/10.1007/978-3-030-90131-8_3Luciano A. Pradelli, Juan M. Leardi, Martín D. Ezcurra Body Size Disparity of the Archosauromorph Reptiles during the First 90 Million Years of Their Evolution, Ameghiniana 59, no.11 (Jan 2022).https://doi.org/10.5710/AMGH.16.09.2021.3441Ryosuke Nakadai, Tommi Nyman, Koya Hashimoto, Takaya Iwasaki, Anu Valtonen, Evan Economo Fundamental resource specialization of herbivorous butterflies decreases towards lower latitudes, Journal of Biogeography 48, no.1010 (Aug 2021): 2524–2537.https://doi.org/10.1111/jbi.14218Natalia López Carranza, Sandra J. Carlson Quantifying shell outline variability in extant and fossil Laqueus (Brachiopoda: Terebratulida): are outlines good proxies for long-looped brachidial morphology and can they help us characterize species?, Paleobiology 47, no.11 (Dec 2020): 149–170.https://doi.org/10.1017/pab.2020.56Naoki Matsuda, Satoshi Fujita, Kazuhiro Tanaka, Yasuhiko Watari, Yoshinori Shintani, Shin G. Goto, Tomoyosi Nisimura, Yohei Izumi, Hideharu Numata Robustness of latitudinal life-cycle variations in a cricket Dianemobius nigrofasciatus (Orthoptera: Trigonidiidae) in Japan against climate warming over the last five decades, Applied Entomology and Zoology 54, no.44 (Jun 2019): 349–357.https://doi.org/10.1007/s13355-019-00629-xEliška Baranovská, Karel Tajovský, Michal Knapp Changes in the Body Size of Carabid Beetles Along Elevational Gradients: A Multispecies Study of Between- and Within-Population Variation, Environmental Entomology 48, no.33 (Apr 2019): 583–591.https://doi.org/10.1093/ee/nvz036Mark K. L. Wong, Benoit Guénard, Owen T. Lewis Trait‐based ecology of terrestrial arthropods, Biological Reviews 94, no.33 (Dec 2018): 999–1022.https://doi.org/10.1111/brv.12488PAUL J. DAVISON, JEREMY FIELD Season length, body size, and social polymorphism: size clines but not saw tooth clines in sweat bees, Ecological Entomology 42, no.66 (Aug 2017): 768–776.https://doi.org/10.1111/een.12448Jianjun Tang, Haimin He, Chao Chen, Shu Fu, Fangsen Xue, Wolfgang Arthofer Latitudinal cogradient variation of development time and growth rate and a negative latitudinal body weight cline in a widely distributed cabbage beetle, PLOS ONE 12, no.77 (Jul 2017): e0181030.https://doi.org/10.1371/journal.pone.0181030Gideon Ney, Johannes Schul, Tzen-Yuh Chiang Population structure within the one-dimensional range of a coastal plain katydid, PLOS ONE 12, no.66 (Jun 2017): e0179361.https://doi.org/10.1371/journal.pone.0179361Jessica J. Scriven, Penelope R. Whitehorn, Dave Goulson, Matthew C. Tinsley, Matjaž Kuntner Bergmann's Body Size Rule Operates in Facultatively Endothermic Insects: Evidence from a Complex of Cryptic Bumblebee Species, PLOS ONE 11, no.1010 (Oct 2016): e0163307.https://doi.org/10.1371/journal.pone.0163307Víctor Hugo Ramírez‐Delgado, Salomón Sanabria‐Urbán, Martin A. Serrano‐Meneses, Raúl Cueva del Castillo The converse to Bergmann's rule in bumblebees, a phylogenetic approach, Ecology and Evolution 6, no.1717 (Aug 2016): 6160–6169.https://doi.org/10.1002/ece3.2321Madeleine Barton, Paul Sunnucks, Melanie Norgate, Neil Murray, Michael Kearney, Casper Breuker Co-Gradient Variation in Growth Rate and Development Time of a Broadly Distributed Butterfly, PLoS ONE 9, no.44 (Apr 2014): e95258.https://doi.org/10.1371/journal.pone.0095258Christopher Hassall, Simon Keat, David J. Thompson, Phillip C. Watts Bergmann's rule is maintained during a rapid range expansion in a damselfly, Global Change Biology 20, no.22 (Dec 2013): 475–482.https://doi.org/10.1111/gcb.12340Yuwei Hu, Fen Zhu, Xiaoping Wang, Chuxiong Guan, Yuxing An, Chaoliang Lei Latitudinal pattern in body size in a cockroach, Eupolyphaga sinensis, Entomologia Experimentalis et Applicata 144, no.22 (Jun 2012): 223–230.https://doi.org/10.1111/j.1570-7458.2012.01281.xHiroshi Ikeda, Yuzo Tsuchiya, Nobuaki Nagata, Masamichi T. Ito, Teiji Sota Altitudinal life-cycle and body-size variation in ground beetles of the genus Carabus (subgenus Ohomopterus) in relation to the temperature conditions and prey earthworms, Pedobiologia 55, no.22 (Mar 2012): 67–73.https://doi.org/10.1016/j.pedobi.2011.10.008Shai Meiri Bergmann's Rule – what's in a name?, Global Ecology and Biogeography 20, no.11 (Dec 2010): 203–207.https://doi.org/10.1111/j.1466-8238.2010.00577.xDaniel Pincheira-Donoso The balance between predictions and evidence and the search for universal macroecological patterns: taking Bergmann's rule back to its endothermic origin, Theory in Biosciences 129, no.44 (Jun 2010): 247–253.https://doi.org/10.1007/s12064-010-0101-0Steven L. Chown, Kevin J. Gaston Body size variation in insects: a macroecological perspective, Biological Reviews 85, no.11 (Jan 2010): 139–169.https://doi.org/10.1111/j.1469-185X.2009.00097.xWolf Blanckenhorn Causes and Consequences of Phenotypic Plasticity in Body Size, (Jan 2011).https://doi.org/10.1201/b10201-11Mark K. Schutze, Anthony R. Clarke Converse Bergmann cline in a Eucalyptus herbivore, Paropsis atomaria Olivier (Coleoptera: Chrysomelidae): phenotypic plasticity or local adaptation?, Global Ecology and Biogeography 17, no.33 (Jan 2008): 424–431.https://doi.org/10.1111/j.1466-8238.2007.00374.xWolf U. Blanckenhorn, R. Craig Stillwell, Kyle A. Young, Charles W. Fox, Kyle G. Ashton WHEN RENSCH MEETS BERGMANN: DOES SEXUAL SIZE DIMORPHISM CHANGE SYSTEMATICALLY WITH LATITUDE?, Evolution 60, no.1010 (May 2007): 2004–2011.https://doi.org/10.1111/j.0014-3820.2006.tb01838.xDANIEL BERNER, WOLF U. BLANCKENHORN Grasshopper ontogeny in relation to time constraints: adaptive divergence and stasis, Journal of Animal Ecology 75, no.11 (Dec 2005): 130–139.https://doi.org/10.1111/j.1365-2656.2005.01028.xWolf U. Blanckenhorn, R. Craig Stillwell, Kyle A. Young, Charles W. Fox, Kyle G. Ashton WHEN RENSCH MEETS BERGMANN: DOES SEXUAL SIZE DIMORPHISM CHANGE SYSTEMATICALLY WITH LATITUDE?, Evolution 60, no.1010 (Jan 2006): 2004.https://doi.org/10.1554/06-110.1Wolf U. Blanckenhorn Temperature effects on egg size and their fitness consequences in the yellow dung fly Scathophaga stercoraria, Evolutionary Ecology 14, no.77 (Sep 2000): 627–643.https://doi.org/10.1023/A:1010911017700Wolf U. Blanckenhorn LIFE‐HISTORY DIFFERENCES IN ADJACENT WATER STRIDER POPULATIONS: PHENOTYPIC PLASTICITY OR HERITABLE RESPONSES TO STREAM TEMPERATURE?, Evolution 45, no.66 (May 2017): 1520–1525.https://doi.org/10.1111/j.1558-5646.1991.tb02655.xSören Nylin, Lena Svärd Latitudinal patterns in the size of European butterflies, Ecography 14, no.33 (Jun 2006): 192–202.https://doi.org/10.1111/j.1600-0587.1991.tb00652.xTimothy A. Mousseau, Derek A. Roff ADAPTATION TO SEASONALITY IN A CRICKET: PATTERNS OF PHENOTYPIC AND GENOTYPIC VARIATION IN BODY SIZE AND DIAPAUSE EXPRESSION ALONG A CLINE IN SEASON LENGTH, Evolution 43, no.77 (May 2017): 1483–1496.https://doi.org/10.1111/j.1558-5646.1989.tb02598.xHans-Ulrich Thiele, Friedrich Weber Tagesrhythmen der Aktivit�t bei Carabiden, Oecologia 1, no.44 (Jan 1968): 315–355.https://doi.org/10.1007/BF00386688Sinzo Masaki GEOGRAPHIC VARIATION AND CLIMATIC ADAPTATION IN A FIELD CRICKET (ORTHOPTERA: GRYLLIDAE), Evolution 21, no.44 (May 2017): 725–741.https://doi.org/10.1111/j.1558-5646.1967.tb03430.xROBERT R. SOKAL STATISTICAL METHODS IN SYSTEMATICS*, Biological Reviews 40, no.33 (Jan 2008): 337–389.https://doi.org/10.1111/j.1469-185X.1965.tb00806.xCarleton Ray The application of Bergmann's and Allen's rules to the poikilotherms, Journal of Morphology 106, no.11 (Feb 2005): 85–108.https://doi.org/10.1002/jmor.1051060104
Referência(s)