Oxygen Consumption of Torpid, Resting, Active, and Flying Hummingbirds
1963; University of Chicago Press; Volume: 36; Issue: 2 Linguagem: Inglês
10.1086/physzool.36.2.30155436
ISSN1937-4267
Autores Tópico(s)Avian ecology and behavior
ResumoPrevious articleNext article No AccessOxygen Consumption of Torpid, Resting, Active, and Flying HummingbirdsRobert C. LasiewskiRobert C. LasiewskiPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 36, Number 2Apr., 1963 Article DOIhttps://doi.org/10.1086/physzool.36.2.30155436 Views: 416Total views on this site Citations: 240Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1963 University of ChicagoPDF download Crossref reports the following articles citing this article:Diana Carolina Revelo Hernández, Justin W. Baldwin, Gustavo A. Londoño Ecological drivers and consequences of torpor in Andean hummingbirds, Proceedings of the Royal Society B: Biological Sciences 290, no.19951995 (Mar 2023).https://doi.org/10.1098/rspb.2022.2099Erich R. Eberts, Glenn J. Tattersall, Peter J. Auger, Maria Curley, Melissa I. Morado, Eric G. Strauss, Donald R. Powers, Noemi C. Soveral, Bret W. Tobalske, Anusha Shankar Free-living Allen's hummingbirds (Selasphorus sasin) rarely use torpor while nesting, Journal of Thermal Biology 112 (Feb 2023): 103391.https://doi.org/10.1016/j.jtherbio.2022.103391Austin R. Spence, Hannah LeWinter, Morgan W. Tingley Anna's hummingbird ( Calypte anna ) physiological response to novel thermal and hypoxic conditions at high elevations, Journal of Experimental Biology 225, no.1010 (May 2022).https://doi.org/10.1242/jeb.243294Charles M. Bishop, Christopher G. Guglielmo Flight, (Jan 2022): 1265–1329.https://doi.org/10.1016/B978-0-12-819770-7.00012-8Andrey Bushuev, Ekaterina Zubkova, Anvar Kerimov Evidence of Torpor in a Tropical Passerine, the Scarlet-Backed Flowerpecker Dicaeum cruentatum, Ornithological Science 20, no.22 (Jul 2021).https://doi.org/10.2326/osj.20.213Zuzana Sejfová, Jiří Mlíkovský, Francis Luma Ewome, Petra Janečková, Yannick Klomberg, Marcus Mokake Njie, Štěpán Janeček Sunbirds' tendency to hover: the roles of energetic rewards, inflorescence architecture and rain, Journal of Avian Biology 52, no.77 (Jun 2021).https://doi.org/10.1111/jav.02818Austin R. Spence, Morgan W. Tingley, Tony Williams Body size and environment influence both intraspecific and interspecific variation in daily torpor use across hummingbirds, Functional Ecology 35, no.44 (Mar 2021): 870–883.https://doi.org/10.1111/1365-2435.13782Fritz Geiser Patterns and Expression of Torpor, (Aug 2021): 93–107.https://doi.org/10.1007/978-3-030-75525-6_4Fritz Geiser Ecological and Behavioural Aspects of Torpor, (Aug 2021): 167–194.https://doi.org/10.1007/978-3-030-75525-6_7Elisavet Zagkle, Marta Grosiak, Ulf Bauchinger, Edyta T. Sadowska Rest-Phase Hypothermia Reveals a Link Between Aging and Oxidative Stress: A Novel Hypothesis, Frontiers in Physiology 11 (Dec 2020).https://doi.org/10.3389/fphys.2020.575060Blair O. Wolf, Andrew E. McKechnie, C. Jonathan Schmitt, Zenon J. Czenze, Andrew B. Johnson, Christopher C. Witt Extreme and variable torpor among high-elevation Andean hummingbird species, Biology Letters 16, no.99 (Sep 2020): 20200428.https://doi.org/10.1098/rsbl.2020.0428Cory D Dunn, Bala Anı Akpınar, Vivek Sharma An Unusual Amino Acid Substitution Within Hummingbird Cytochrome c Oxidase Alters a Key Proton-Conducting Channel, G3 Genes|Genomes|Genetics 10, no.77 (Jul 2020): 2477–2485.https://doi.org/10.1534/g3.120.401312Anusha Shankar, Rebecca J. Schroeder, Susan M. Wethington, Catherine H. Graham, Donald R. Powers Hummingbird torpor in context: duration, more than temperature, is the key to nighttime energy savings, Journal of Avian Biology 51, no.55 (May 2020).https://doi.org/10.1111/jav.02305Anusha Shankar, Donald R. Powers, Liliana M. Dávalos, Catherine H. Graham, Dehua Wang The allometry of daily energy expenditure in hummingbirds: An energy budget approach, Journal of Animal Ecology 89, no.55 (Feb 2020): 1254–1261.https://doi.org/10.1111/1365-2656.13185Derrick J.E. Groom, Nadia Bayram, Mary Shehata, L. Gerardo Herrera M., Kenneth C. Welch Low ambient temperature reduces the time for fuel switching in the ruby-throated hummingbird (Archilochus colubris), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 237 (Nov 2019): 110559.https://doi.org/10.1016/j.cbpa.2019.110559Anusha Shankar, Catherine H. Graham, Joseph R. Canepa, Susan M. Wethington, Donald R. Powers, Steven Portugal Hummingbirds budget energy flexibly in response to changing resources, Functional Ecology 33, no.1010 (Aug 2019): 1904–1916.https://doi.org/10.1111/1365-2435.13404William A. Buttemer, Silke Bauer, Tamara Emmenegger, Dimitar Dimitrov, Strahil Peev, Steffen Hahn Moult-related reduction of aerobic scope in passerine birds, Journal of Comparative Physiology B 189, no.3-43-4 (Mar 2019): 463–470.https://doi.org/10.1007/s00360-019-01213-zMarisa C W Lim, Christopher C Witt, Catherine H Graham, Liliana M Dávalos, Balazs Papp Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics, Genome Biology and Evolution 11, no.66 (May 2019): 1573–1585.https://doi.org/10.1093/gbe/evz101A Rico-Guevara, M A Rubega, K J Hurme, R Dudley Shifting Paradigms in the Mechanics of Nectar Extraction and Hummingbird Bill Morphology, Integrative Organismal Biology 1, no.11 (Jan 2019).https://doi.org/10.1093/iob/oby006Theodore J. Zenzal, Frank R. Moore Resource use and defence by ruby-throated hummingbirds during stopover, Behaviour 156, no.22 (Jan 2019): 131–153.https://doi.org/10.1163/1568539X-00003533Erich Eberts, Morag Dick, Kenneth Welch Metabolic Fates of Evening Crop-Stored Sugar in Ruby-Throated Hummingbirds (Archilochus colubris), Diversity 11, no.11 (Jan 2019): 9.https://doi.org/10.3390/d11010009Ruta R. Bandivadekar, Pranav S. Pandit, Rahel Sollmann, Michael J. Thomas, Scott M. Logan, Jennifer C. Brown, A. Peter Klimley, Lisa A. Tell, Tim A. Mousseau Use of RFID technology to characterize feeder visitations and contact network of hummingbirds in urban habitats, PLOS ONE 13, no.1212 (Dec 2018): e0208057.https://doi.org/10.1371/journal.pone.0208057Theodore J. Zenzal, Andrea J. Contina, Jeffrey F. Kelly, Frank R. Moore Temporal migration patterns between natal locations of ruby-throated hummingbirds (Archilochus colubris) and their Gulf Coast stopover site, Movement Ecology 6, no.11 (Jan 2018).https://doi.org/10.1186/s40462-017-0120-2Nickolas M. Waser, Paul J. CaraDonna, and Mary V. Price Atypical Flowers Can Be as Profitable as Typical Hummingbird Flowers, The American Naturalist 192, no.55 (Sep 2018): 644–653.https://doi.org/10.1086/699836Diego Ocampo, Gilbert Barrantes, J. Albert C. Uy Morphological adaptations for relatively larger brains in hummingbird skulls, Ecology and Evolution 8, no.2121 (Sep 2018): 10482–10488.https://doi.org/10.1002/ece3.4513Rivers Ingersoll, David Lentink How the hummingbird wingbeat is tuned for efficient hovering, The Journal of Experimental Biology 221, no.2020 (Oct 2018): jeb178228.https://doi.org/10.1242/jeb.178228Douglas L. Altshuler, Mandyam V. Srinivasan Comparison of Visually Guided Flight in Insects and Birds, Frontiers in Neuroscience 12 (Mar 2018).https://doi.org/10.3389/fnins.2018.00157Roberto F. Nespolo, César González-Lagos, Jaiber J. Solano-Iguaran, Magnus Elfwing, Alvaro Garitano-Zavala, Santiago Mañosa, Juan Carlos Alonso, Jordi Altimiras Aerobic power and flight capacity in birds: a phylogenetic test of the heart-size hypothesis, Journal of Experimental Biology 221, no.11 (Jan 2018).https://doi.org/10.1242/jeb.162693Donald R. Powers, Kathleen M. Langland, Susan M. Wethington, Sean D. Powers, Catherine H. Graham, Bret W. Tobalske Hovering in the heat: effects of environmental temperature on heat regulation in foraging hummingbirds, Royal Society Open Science 4, no.1212 (Dec 2017): 171056.https://doi.org/10.1098/rsos.171056Lily Hou, Kenneth C. Welch Premigratory ruby-throated hummingbirds, Archilochus colubris, exhibit multiple strategies for fuelling migration, Animal Behaviour 121 (Nov 2016): 87–99.https://doi.org/10.1016/j.anbehav.2016.08.019JAMES H. JONES Comparative Physiology of Fatigue, Medicine & Science in Sports & Exercise 48, no.1111 (Nov 2016): 2257–2269.https://doi.org/10.1249/MSS.0000000000000985Catherine H. Graham, Sarah R. Supp, Donald R. Powers, Pieter Beck, Marisa C. W. Lim, Anusha Shankar, Tina Cormier, Scott Goetz, Susan M. Wethington Winter conditions influence biological responses of migrating hummingbirds, Ecosphere 7, no.1010 (Oct 2016).https://doi.org/10.1002/ecs2.1470Theodore J. Zenzal, Frank R. Moore Stopover biology of Ruby-throated Hummingbirds ( Archilochus colubris ) during autumn migration, The Auk 133, no.22 (Apr 2016): 237–250.https://doi.org/10.1642/AUK-15-160.1Thomas Ruf, Fritz Geiser Daily torpor and hibernation in birds and mammals, Biological Reviews 90, no.33 (Aug 2014): 891–926.https://doi.org/10.1111/brv.12137C.M. Bishop, P.J. Butler Flight, (Jan 2015): 919–974.https://doi.org/10.1016/B978-0-12-407160-5.00039-7S. R. Supp, Frank A. La Sorte, Tina A. Cormier, Marisa C.W. Lim, Donald R. Powers, Susan M. Wethington, Scott Goetz, Catherine H. Graham Citizen‐science data provides new insight into annual and seasonal variation in migration patterns, Ecosphere 6, no.11 (Jan 2015): 1–19.https://doi.org/10.1890/ES14-00290.1Kenneth C. Welch, Chris C. W. Chen Sugar flux through the flight muscles of hovering vertebrate nectarivores: a review, Journal of Comparative Physiology B 184, no.88 (Jul 2014): 945–959.https://doi.org/10.1007/s00360-014-0843-yPetra Wester Sunbirds hover at flowers of Salvia and Lycium, Ostrich 84, no.11 (Apr 2013): 27–32.https://doi.org/10.2989/00306525.2013.774300Christopher J. Clark The role of power versus energy in courtship: what is the 'energetic cost' of a courtship display?, Animal Behaviour 84, no.11 (Jul 2012): 269–277.https://doi.org/10.1016/j.anbehav.2012.04.012Segal M. Boaz, Cory D. Champagne, Melinda A. Fowler, Dorian H. Houser, Daniel E. Crocker Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 161, no.22 (Feb 2012): 114–121.https://doi.org/10.1016/j.cbpa.2011.09.009Donald R. Powers, Philip W. Getsinger, Bret W. Tobalske, Susan M. Wethington, Sean D. Powers, Douglas R. Warrick Respiratory evaporative water loss during hovering and forward flight in hummingbirds, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 161, no.22 (Feb 2012): 279–285.https://doi.org/10.1016/j.cbpa.2011.11.008Paulina L. González-Gómez, Natalia Ricote-Martinez, Pablo Razeto-Barry, Ivania S. Cotorás, Francisco Bozinovic Thermoregulatory cost affects territorial behavior in hummingbirds: a model and its application, Behavioral Ecology and Sociobiology 65, no.1111 (Jun 2011): 2141–2148.https://doi.org/10.1007/s00265-011-1222-2M.J. Fernández, F. Bozinovic, R.K. Suarez Enzymatic flux capacities in hummingbird flight muscles: a "one size fits all" hypothesis, Canadian Journal of Zoology 89, no.1010 (Oct 2011): 985–991.https://doi.org/10.1139/z11-074 María José Fernández , Robert Dudley , and Francisco Bozinovic Comparative Energetics of the Giant Hummingbird (Patagona gigas), Physiological and Biochemical Zoology 84, no.33 (Jul 2015): 333–340.https://doi.org/10.1086/660084Bret W. Tobalske, Douglas R. Warrick, Brandon E. Jackson, Kenneth P. Dial Morphological and Behavioral Correlates of Flapping Flight, (Apr 2011): 257–281.https://doi.org/10.1002/9781119990475.ch10Catherine Hambly, Christian C. Voigt Measuring energy expenditure in birds using bolus injections of 13C-labelled Na-bicarbonate, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 158, no.33 (Mar 2011): 323–328.https://doi.org/10.1016/j.cbpa.2010.05.012Kenneth C. Welch The power of feeder-mask respirometry as a method for examining hummingbird energetics, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 158, no.33 (Mar 2011): 276–286.https://doi.org/10.1016/j.cbpa.2010.07.014Raul K. Suarez, L. Gerardo Herrera M., Kenneth C. Welch The sugar oxidation cascade: aerial refueling in hummingbirds and nectar bats, Journal of Experimental Biology 214, no.22 (Jan 2011): 172–178.https://doi.org/10.1242/jeb.047936Paulina L. González-Gómez, Rodrigo A. Vásquez, Francisco Bozinovic Flexibility of Foraging Behavior in Hummingbirds: The Role of Energy Constraints and Cognitive Abilities, The Auk 128, no.11 (Jan 2011): 36–42.https://doi.org/10.1525/auk.2011.10024Christian C. Voigt, B.-Markus Schuller, Stefan Greif, Björn M. Siemers Perch-hunting in insectivorous Rhinolophus bats is related to the high energy costs of manoeuvring in flight, Journal of Comparative Physiology B 180, no.77 (Mar 2010): 1079–1088.https://doi.org/10.1007/s00360-010-0466-xO. Amitai, S. Holtze, S. Barkan, E. Amichai, C. Korine, B. Pinshow, C. C. Voigt Fruit bats (Pteropodidae) fuel their metabolism rapidly and directly with exogenous sugars, Journal of Experimental Biology 213, no.1515 (Aug 2010): 2693–2699.https://doi.org/10.1242/jeb.043505Dennis Evangelista, María José Fernández, Madalyn S. Berns, Aaron Hoover, and Robert Dudley Hovering Energetics and Thermal Balance in Anna's Hummingbirds (Calypte anna) D. Evangelista, M. J. Fernández, M. S. Berns, A. Hoover, and R. Dudley, Physiological and Biochemical Zoology 83, no.33 (Jul 2015): 406–413.https://doi.org/10.1086/651460M. W. Bundle OXYGEN UPTAKE OF FLYING BUDGERIGARS BY V. A. TUCKER, Journal of Experimental Biology 212, no.2222 (Oct 2009): 3595–3596.https://doi.org/10.1242/jeb.029272R.K. Suarez, K.C. Welch, S.K. Hanna, L.G. Herrera M. Flight muscle enzymes and metabolic flux rates during hovering flight of the nectar bat, Glossophaga soricina: Further evidence of convergence with hummingbirds, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 153, no.22 (Jun 2009): 136–140.https://doi.org/10.1016/j.cbpa.2009.01.015Raul K. Suarez, Kenneth C. Welch Stoking the Brightest Fires of Life Among Vertebrates, (Jun 2009): 381–394.https://doi.org/10.1007/978-3-540-93985-6_15Anders Hedenström Power and metabolic scope of bird flight: a phylogenetic analysis of biomechanical predictions, Journal of Comparative Physiology A 194, no.77 (May 2008): 685–691.https://doi.org/10.1007/s00359-008-0345-zDouglas S Glazier Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals, Proceedings of the Royal Society B: Biological Sciences 275, no.16411641 (Mar 2008): 1405–1410.https://doi.org/10.1098/rspb.2008.0118Kenneth C. Welch,, Raul K. Suarez Altitude and temperature effects on the energetic cost of hover-feeding in migratory rufous hummingbirds, Selasphorus rufus, Canadian Journal of Zoology 86, no.33 (Mar 2008): 161–169.https://doi.org/10.1139/Z07-127Kenneth C. Welch, Raul K. Suarez Oxidation rate and turnover of ingested sugar in hovering Anna's( Calypte anna ) and rufous ( Selasphorus rufus )hummingbirds, Journal of Experimental Biology 210, no.1212 (Jun 2007): 2154–2162.https://doi.org/10.1242/jeb.005363James L Hargrove Adipose energy stores, physical work, and the metabolic syndrome: lessons from hummingbirds, Nutrition Journal 4, no.11 (Dec 2005).https://doi.org/10.1186/1475-2891-4-36Geoffrey P. Dobson Organ arrest, protection and preservation: natural hibernation to cardiac surgery, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 139, no.33 (Nov 2004): 469–485.https://doi.org/10.1016/j.cbpc.2004.06.002C. Hambly, B. Pinshow, P. Wiersma, S. Verhulst, S. B. Piertney, E. J. Harper, J. R. Speakman Comparison of the cost of short flights in a nectarivorous and a non-nectarivorous bird, Journal of Experimental Biology 207, no.2222 (Oct 2004): 3959–3968.https://doi.org/10.1242/jeb.01233Fritz Geiser Metabolic Rate and Body Temperature Reduction During Hibernation and Daily Torpor, Annual Review of Physiology 66, no.11 (Mar 2004): 239–274.https://doi.org/10.1146/annurev.physiol.66.032102.115105S Soobramoney, C.T Downs, N.J Adams Physiological variability in the Fiscal Shrike Lanius collaris along an altitudinal gradient in South Africa, Journal of Thermal Biology 28, no.88 (Nov 2003): 581–594.https://doi.org/10.1016/j.jtherbio.2003.08.004 Todd J. McWhorter , Donald R. Powers , and Carlos Martínez del Rio Are Hummingbirds Facultatively Ammonotelic? Nitrogen Excretion and Requirements as a Function of Body Size T. J. McWhorter, D. R. Powers, and C. Martínez del Rio, Physiological and Biochemical Zoology 76, no.55 (Jul 2015): 731–743.https://doi.org/10.1086/376917 Donald R. Powers , Alison R. Brown , and Jessamyn A. Van Hook Influence of Normal Daytime Fat Deposition on Laboratory Measurements of Torpor Use in Territorial versus Nonterritorial Hummingbirds D. R. Powers, A. R. Brown, and J. A. Van Hook, Physiological and Biochemical Zoology 76, no.33 (Jul 2015): 389–397.https://doi.org/10.1086/374286M Victoria López-Calleja, Francisco Bozinovic Dynamic energy and time budgets in hummingbirds: a study in Sephanoides sephaniodes, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 134, no.22 (Feb 2003): 283–295.https://doi.org/10.1016/S1095-6433(02)00263-5A. J. Hulbert, S. Faulks, W. A. Buttemer, P. L. Else Acyl composition of muscle membranes varies with body size in birds, Journal of Experimental Biology 205, no.2222 (Nov 2002): 3561–3569.https://doi.org/10.1242/jeb.205.22.3561Raul K Suarez, C.Lee Gass Hummingbird foraging and the relation between bioenergetics and behaviour, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 133, no.22 (Oct 2002): 335–343.https://doi.org/10.1016/S1095-6433(02)00165-4Douglas L. Altshuler, Robert Dudley The ecological and evolutionary interface of hummingbird flight physiology, Journal of Experimental Biology 205, no.1616 (Aug 2002): 2325–2336.https://doi.org/10.1242/jeb.205.16.2325Andrew E. McKechnie, Barry G. Lovegrove , The Condor 104, no.44 ( 2002): 705.https://doi.org/10.1093/condor/104.4.705John N. Maina, Christopher Nathaniel A qualitative and quantitative study of the lung of an ostrich, Struthio camelus, Journal of Experimental Biology 204, no.1313 (Jul 2001): 2313–2330.https://doi.org/10.1242/jeb.204.13.2313CLAUDIA R. VIANNA, THILO HAGEN, CHEN-YU ZHANG, ERIC BACHMAN, OLIVIER BOSS, BALAZS GEREBEN, ANSELMO S. MORISCOT, BRADFORD B. LOWELL, JOSÉ EDUARDO P. W. BICUDO, ANTONIO C. BIANCO Cloning and functional characterization of an uncoupling protein homolog in hummingbirds, Physiological Genomics 5, no.33 (Apr 2001): 137–145.https://doi.org/10.1152/physiolgenomics.2001.5.3.137 Todd J. McWhorter and Carlos Martínez del Rio Does Gut Function Limit Hummingbird Food Intake? T. J. McWhorter and C. Martínez del Rio, Physiological and Biochemical Zoology 73, no.33 (Jul 2015): 313–324.https://doi.org/10.1086/316753Michele Merola-Zwartjes, J. David Ligon ECOLOGICAL ENERGETICS OF THE PUERTO RICAN TODY: HETEROTHERMY, TORPOR, AND INTRA-ISLAND VARIATION, Ecology 81, no.44 (Apr 2000): 990–1003.https://doi.org/10.1890/0012-9658(2000)081[0990:EEOTPR]2.0.CO;2P.J. BUTLER, C.M. BISHOP Flight, (Jan 2000): 391–435.https://doi.org/10.1016/B978-012747605-6/50016-XC L Gass, M T Romich, R K Suarez Energetics of hummingbird foraging at low ambient temperature, Canadian Journal of Zoology 77, no.22 (Aug 1999): 314–320.https://doi.org/10.1139/z98-221C.J. Savory Temporal control of feeding behaviour and its association with gastrointestinal function, Journal of Experimental Zoology 283, no.4-54-5 (Mar 1999): 339–347.https://doi.org/10.1002/(SICI)1097-010X(19990301/01)283:4/5 3.0.CO;2-6J.R. Speakman The Cost of Living: Field Metabolic Rates of Small Mammals, (Jan 1999): 177–297.https://doi.org/10.1016/S0065-2504(08)60019-7José Eduardo, P.W. Bicudo, José Guilherme Chaui-Berlinck Locomotion and thermogenesis in hummingbirds, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 120, no.11 (May 1998): 27–33.https://doi.org/10.1016/S0305-0491(98)00020-0G. Casotti, C.A. Beuchat, E.J. Braun Morphology of the kidney in a nectarivorous bird, the Anna's hummingbird Calypte anna, Journal of Zoology 244, no.22 (Feb 2006): 175–184.https://doi.org/10.1111/j.1469-7998.1998.tb00023.xMarion R. Preest, Carol A. Beuchat Ammonia excretion by hummingbirds, Nature 386, no.66256625 (Apr 1997): 561–562.https://doi.org/10.1038/386561a0 Theresa L. Bucher , and Mark A. Chappell Respiratory Exchange and Ventilation during Nocturnal Torpor in Hummingbirds, Physiological Zoology 70, no.11 (Sep 2015): 45–52.https://doi.org/10.1086/639539Randi Eidsmo Reinertsen Physiological and Ecological Aspects of Hypothermia, (Jan 1996): 125–157.https://doi.org/10.1007/978-1-4613-0425-8_5Ulla M. Norberg Energetics of Flight, (Jan 1996): 199–249.https://doi.org/10.1007/978-1-4613-0425-8_7 Fritz Geiser , and Thomas Ruf Hibernation versus Daily Torpor in Mammals and Birds: Physiological Variables and Classification of Torpor Patterns, Physiological Zoology 68, no.66 (Sep 2015): 935–966.https://doi.org/10.1086/physzool.68.6.30163788Peng Chai, Robert Dudley Limits to vertebrate locomotor energetics suggested by hummingbirds hovering in heliox, Nature 377, no.65516551 (Oct 1995): 722–725.https://doi.org/10.1038/377722a0Donald R. Powers, Timothy M. Conley Field Metabolic Rate and Food Consumption of Two Sympatric Hummingbird Species in Southeastern Arizona, The Condor 96, no.11 (Feb 1994): 141–150.https://doi.org/10.2307/1369071Dominic J. Wells Muscle Performance in Hovering Hummingbirds, Journal of Experimental Biology 178, no.11 (May 1993): 39–57.https://doi.org/10.1242/jeb.178.1.39R. K. Suarez Hummingbird flight: Sustaining the highest mass-specific metabolic rates among vertebrates, Experientia 48, no.66 (Jun 1992): 565–570.https://doi.org/10.1007/BF01920240Robert S. Mulvihill, Robert C. Leberman, D. Scott Wood A Possible Relationship between Reversed Sexual Size Dimorphism and Reduced Male Survivorship in the Ruby-Throated Hummingbird, The Condor 94, no.22 (May 1992): 480–489.https://doi.org/10.2307/1369220Dennis Heinemann Resource use, energetic profitability, and behavioral decisions in migrant rufous hummingbirds, Oecologia 90, no.11 (Apr 1992): 137–149.https://doi.org/10.1007/BF00317819Sara M. Hiebert Time-dependent thresholds for torpor initiation in the rufous hummingbird (Selasphorus rufus), Journal of Comparative Physiology B 162, no.33 (Apr 1992): 249–255.https://doi.org/10.1007/BF00357531S Dhawan Bird flight, Sadhana 16, no.44 (Dec 1991): 275–352.https://doi.org/10.1007/BF02745345Stan L. Lindstedt, James F. Hokanson, Dominic J. Wells, Steven D. Swain, Hans Hoppeler, Vilma Navarro Running energetics in the pronghorn antelope, Nature 353, no.63466346 (Oct 1991): 748–750.https://doi.org/10.1038/353748a0Sara M. Hiebert Seasonal Differences in the Response of Rufous Hummingbirds to Food Restriction: Body Mass and the Use of Torpor, The Condor 93, no.33 (Aug 1991): 526–537.https://doi.org/10.2307/1368184 Carol A. Beuchat , William A. Calder III , and Eldon J. Braun The Integration of Osmoregulation and Energy Balance in Hummingbirds, Physiological Zoology 63, no.66 (Sep 2015): 1059–1081.https://doi.org/10.1086/physzool.63.6.30152633W. A. Calder, L. L. Calder, T. D. Fraizer The hummingbird's restraint: A natural model for weight control, Experientia 46, no.1010 (Oct 1990): 999–1002.https://doi.org/10.1007/BF01940653F. Reed Hainsworth, Larry L. Wolf Comparative Studies of Feeding, (Jan 1990): 265–296.https://doi.org/10.1007/978-1-4613-0577-4_11BRIAN G. COLLINS, DAVID C. PATON Consequences of differences in body mass, wing length and leg morphology for nectar-feeding birds, Austral Ecology 14, no.33 (Sep 1989): 269–289.https://doi.org/10.1111/j.1442-9993.1989.tb01437.xC. John Savory Responses of fowls to an operant feeding procedure and its potential use for reducing randomness in meal occurrence, Physiology & Behavior 45, no.22 (Feb 1989): 373–379.https://doi.org/10.1016/0031-9384(89)90143-1A. T. Brice, C. R. Grau Hummingbird nutrition: Development of a purified diet for long-term maintenance, Zoo Biology 8, no.33 (Jan 1989): 233–237.https://doi.org/10.1002/zoo.1430080304Theresa L. Bucher, Mark A. Chappell Energy Metabolism and Patterns of Ventilation in Euthermic and Torpid Hummingbirds, (Jan 1989): 187–195.https://doi.org/10.1007/978-1-4757-0031-2_20Brian K. McNab Body Mass, Food Habits, and the Use of Torpor in Birds, (Jan 1989): 283–291.https://doi.org/10.1007/978-1-4757-0031-2_30L. C. H. Wang Ecological, Physiological, and Biochemical Aspects of Torpor in Mammals and Birds, (Jan 1989): 361–401.https://doi.org/10.1007/978-3-642-74078-7_10R. Prinzinger, Ingrid Lübben, K.-L. Schuchmann Energy metabolism and body temperature in 13 sunbird species (Nectariniidae), Comparative Biochemistry and Physiology Part A: Physiology 92, no.33 (Jan 1989): 393–402.https://doi.org/10.1016/0300-9629(89)90581-1 Donald R. Powers , and Kenneth A. Nagy Field Metabolic Rate and Food Consumption by Free-Living Anna's Hummingbirds (Calypte anna), Physiological Zoology 61, no.66 (Sep 2015): 500–506.https://doi.org/10.1086/physzool.61.6.30156158Karl-L. Schuchmann, Roland Prinzinger Energy metabolism, nocturnal torpor, and respiration frequency in a Green Hermit (Phaethornis guy), Journal für Ornithologie 129, no.44 (Oct 1988): 469–472.https://doi.org/10.1007/BF01644492F. Lynn Carpenter, Mark A. Hixon A New Function for Torpor: Fat Conservation in a Wild Migrant Hummingbird, The Condor 90, no.22 (May 1988): 373–378.https://doi.org/10.2307/1368565Brian K. McNab Food habits and the basal rate of metabolism in birds, Oecologia 77, no.33 (Jan 1988): 343–349.https://doi.org/10.1007/BF00378040Fritz Geiser Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition?, Journal of Comparative Physiology B 158, no.11 (Jan 1988): 25–37.https://doi.org/10.1007/BF00692726Paul W. Ewald, Raymond J. Bransfield Territory quality and territorial behavior in two sympatric species of hummingbirds, Behavioral Ecology and Sociobiology 20, no.44 (Apr 1987): 285–293.https://doi.org/10.1007/BF00292181Deborah A. Burgoon, Delbert L. Kilgore, Philip J. Motta Brain temperature in the calliope hummingbird (Stellula calliope): a species lacking arete mirabile ophthalmicum, Journal of Comparative Physiology B 157, no.55 (Jan 1987): 583–588.https://doi.org/10.1007/BF00700978John Prothero, Klaus Dieter Jürgens An energetic model of daily torpor in endotherms, Journal of Theoretical Biology 121, no.44 (Aug 1986): 403–415.https://doi.org/10.1016/S0022-5193(86)80099-6Roland Prinzinger, Ingrid Lübben, Simone Jackel Vergleichende Untersuchungen zum Energiestoffwechsel bei Kolibris und Nektarvögeln, Journal für Ornithologie 127, no.33 (Jul 1986): 303–313.https://doi.org/10.1007/BF01640413George A. Bartholomew, John R. B. Lighton Oxygen Consumption During Hover-Feeding in Free-Ranging Anna Hummingbirds, Journal of Experimental Biology 123, no.11 (Jul 1986): 191–199.https://doi.org/10.1242/jeb.123.1.191 PaweŁ Koteja Maximum Cold-Induced Oxygen Consumption in the House Sparrow Passer domesticus L., Physiological Zoology 59, no.11 (Sep 2015): 43–48.https://doi.org/10.1086/physzool.59.1.30156088Paul W. Ewald Influence of asymmetries in resource quality and age on aggression and dominance in black-chinned hummingbirds, Animal Behaviour 33, no.33 (Aug 1985): 705–719.https://doi.org/10.1016/S0003-3472(85)80001-4Olin Sewall Pettingill Anatomy and Physiology, (Jan 1985): 53–109.https://doi.org/10.1016/B978-0-12-552455-1.50008-3JOHN BRACKENBURY Physiological Responses Of Birds To Flight And Running, Biological Reviews 59, no.44 (Nov 1984): 559–575.https://doi.org/10.1111/j.1469-185X.1984.tb00414.xRichard T. Reynolds, E. Charles Meslow Partitioning of Food and Niche Characteristics of Coexisting Accipiter during Breeding, The Auk 101, no.44 (Oct 1984): 761–779.https://doi.org/10.2307/4086903Jouko Silvola Respiration and energetics of the bumblebee Bombus terrestris queen, Ecography 7, no.22 (May 1984): 177–181.https://doi.org/10.1111/j.1600-0587.1984.tb01119.xRandi Eidsmo Reinertsen, Svein Haftorn The effect of short-time fasting on metabolism and nocturnal hypothermia in the Willow TitParus montanus, Journal of Comparative Physiology B 154, no.11 (Jan 1984): 23–28.https://doi.org/10.1007/BF00683212Brian G Collins, Peter Briffa Nocturnal energy expenditure by honeyeaters experiencing food shortage and low environmental temperatures, Comparative Biochemistry and Physiology Part A: Physiology 78, no.11 (Jan 1984): 77–81.https://doi.org/10.1016/0300-9629(84)90096-3OLIN SEWALL PETTINGILL ANATOMY AND PHYSIOLOGY, (Jan 1984): 59–133.https://doi.org/10.1016/B978-0-12-552450-6.50008-4James C. Brower Further consideration of placoderm evolution, Journal of Vertebrate Paleontology 3, no.22 (Aug 2010): 84–124.https://doi.org/10.1080/02724634.1983.10011963Larry E. Walker, James M. Walker, Joseph W. Palca, Ralph J. Berger A Continuum of Sleep and Shallow Torpor in Fasting Doves, Science 221, no.46064606 (Jul 1983): 194–195.https://doi.org/10.1126/science.221.4606.194Charles T. Robbins Estimation of Energy and Protein Requirements, (Jan 1983): 99–147.https://doi.org/10.1
Referência(s)