Modeling the early Paleozoic long-term climatic trend
2011; Geological Society of America; Volume: 123; Issue: 5-6 Linguagem: Inglês
10.1130/b30364.1
ISSN1943-2674
AutoresÉlise Nardin, Yves Goddéris, Yannick Donnadieu, Guillaume Le Hir, Ronald C. Blakey, Emmanuelle Pucéat, Markus Aretz,
Tópico(s)Hydrocarbon exploration and reservoir analysis
ResumoResearch Article| May 01, 2011 Modeling the early Paleozoic long-term climatic trend Elise Nardin; Elise Nardin † 1Laboratoire des Mécanismes et Transfert en Géologie, CNRS-UPS-IRD, Observatoire Midi-Pyrénées, Toulouse 31400, France †E-mail: elnardin@gmail.com Search for other works by this author on: GSW Google Scholar Yves Goddéris; Yves Goddéris 1Laboratoire des Mécanismes et Transfert en Géologie, CNRS-UPS-IRD, Observatoire Midi-Pyrénées, Toulouse 31400, France Search for other works by this author on: GSW Google Scholar Yannick Donnadieu; Yannick Donnadieu 2Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA, Gif-Sur-Yvette 91191, France Search for other works by this author on: GSW Google Scholar Guillaume Le Hir; Guillaume Le Hir 3Université Paris Diderot, Institut Physique du Globe de Paris, Paris 75238, France Search for other works by this author on: GSW Google Scholar Ronald C. Blakey; Ronald C. Blakey 4Northern Arizona University, Flagstaff, Arizona 86011,USA Search for other works by this author on: GSW Google Scholar Emmanuelle Pucéat; Emmanuelle Pucéat 5Biogéosciences, Université de Dijon, Dijon 21000, France Search for other works by this author on: GSW Google Scholar Markus Aretz Markus Aretz 1Laboratoire des Mécanismes et Transfert en Géologie, CNRS-UPS-IRD, Observatoire Midi-Pyrénées, Toulouse 31400, France Search for other works by this author on: GSW Google Scholar Author and Article Information Elise Nardin † 1Laboratoire des Mécanismes et Transfert en Géologie, CNRS-UPS-IRD, Observatoire Midi-Pyrénées, Toulouse 31400, France Yves Goddéris 1Laboratoire des Mécanismes et Transfert en Géologie, CNRS-UPS-IRD, Observatoire Midi-Pyrénées, Toulouse 31400, France Yannick Donnadieu 2Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA, Gif-Sur-Yvette 91191, France Guillaume Le Hir 3Université Paris Diderot, Institut Physique du Globe de Paris, Paris 75238, France Ronald C. Blakey 4Northern Arizona University, Flagstaff, Arizona 86011,USA Emmanuelle Pucéat 5Biogéosciences, Université de Dijon, Dijon 21000, France Markus Aretz 1Laboratoire des Mécanismes et Transfert en Géologie, CNRS-UPS-IRD, Observatoire Midi-Pyrénées, Toulouse 31400, France †E-mail: elnardin@gmail.com Publisher: Geological Society of America Received: 05 Jul 2010 Revision Received: 23 Sep 2010 Accepted: 23 Sep 2010 First Online: 08 Mar 2017 Online ISSN: 1943-2674 Print ISSN: 0016-7606 © 2011 Geological Society of America GSA Bulletin (2011) 123 (5-6): 1181–1192. https://doi.org/10.1130/B30364.1 Article history Received: 05 Jul 2010 Revision Received: 23 Sep 2010 Accepted: 23 Sep 2010 First Online: 08 Mar 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn Email Permissions Search Site Citation Elise Nardin, Yves Goddéris, Yannick Donnadieu, Guillaume Le Hir, Ronald C. Blakey, Emmanuelle Pucéat, Markus Aretz; Modeling the early Paleozoic long-term climatic trend. GSA Bulletin 2011;; 123 (5-6): 1181–1192. doi: https://doi.org/10.1130/B30364.1 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyGSA Bulletin Search Advanced Search Abstract The early Paleozoic climate has been described as warm and equable. However, recent data based on conodont oxygen isotopic composition reveal a large, long, cooling trend through the Ordovician, followed by an abrupt cooling during the Late Ordovician glaciation. This long-term climate change is associated with a major radiation in the Earth life history. Nonetheless, the driving mechanisms for this cooling trend remain unknown. Carbon dioxide consumption by the weathering of fresh rocks from volcanic arcs has recently been suggested as a possible driver for this climate change. However, the impact of the plate motion context has not been explored yet, although it might have a major impact on atmospheric CO2 levels. Simulations with a climate model coupled to a biogeochemical model (GEOCLIM) show that the atmospheric CO2 decreased from more than 20 PAL (∼5600 ppmv) in the Furongian down to approximately 10 PAL (∼2800 ppmv) in the Llandovery before rising again in the Early Devonian. We suggest that changes in geography and exposure of fresh volcanic rocks on continents are required to explain the large CO2 drawdown that led to the onset of cooler to glacial conditions from the Middle Ordovician to the Llandovery. The weathering of fresh volcanic rocks is itself responsible for 33% of the Late Ordovician atmospheric CO2 decrease; the rest being related to the continent motion through the intertropical convergence zone (ITCZ). Mean annual continental temperature falls by 3°C in the Early Ordovician, reaching 13.5°C during the glacial interval, and rises to 16°C in the Early Devonian. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Referência(s)