Artigo Revisado por pares

Prediction of plant cover from seed bank analysis in a semi-arid plant community on gypsum

2005; Wiley; Volume: 16; Issue: 2 Linguagem: Inglês

10.1658/1100-9233(2005)016[0215

ISSN

1654-1103

Autores

José Miguel Olano, I. Caballero, Javier Loidi, Adrián Escudero,

Tópico(s)

Botany and Plant Ecology Studies

Resumo

Journal of Vegetation ScienceVolume 16, Issue 2 p. 215-222 Prediction of plant cover from seed bank analysis in a semi-arid plant community on gypsum J.M. Olano, Corresponding Author J.M. Olano Área de Botánica, Departamento de Ciencias Agroforestales, Escuela de Ingenierías Agrarias, Universidad de Valladolid, Los Pajaritos s/n, Soria E-42003, Spain* Corresponding author; E-mail [email protected]Search for more papers by this authorI. Caballero, I. Caballero Laboratorio de Botánica, Departamento de Biología Vegetal y Ecología, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, Bilbao E-48080, SpainSearch for more papers by this authorJ. Loidi, J. Loidi Laboratorio de Botánica, Departamento de Biología Vegetal y Ecología, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, Bilbao E-48080, SpainSearch for more papers by this authorA. Escudero, A. Escudero Área de Biodiversidad y Conservación, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles E-28933 SpainSearch for more papers by this author J.M. Olano, Corresponding Author J.M. Olano Área de Botánica, Departamento de Ciencias Agroforestales, Escuela de Ingenierías Agrarias, Universidad de Valladolid, Los Pajaritos s/n, Soria E-42003, Spain* Corresponding author; E-mail [email protected]Search for more papers by this authorI. Caballero, I. Caballero Laboratorio de Botánica, Departamento de Biología Vegetal y Ecología, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, Bilbao E-48080, SpainSearch for more papers by this authorJ. Loidi, J. Loidi Laboratorio de Botánica, Departamento de Biología Vegetal y Ecología, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, Bilbao E-48080, SpainSearch for more papers by this authorA. Escudero, A. Escudero Área de Biodiversidad y Conservación, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles E-28933 SpainSearch for more papers by this author First published: 24 February 2005 https://doi.org/10.1111/j.1654-1103.2005.tb02358.xCitations: 29 Nomenclature: Tutin et al. (1964–1980) and Castroviejo et al. (1986–2005), except for Chaenorhinum reyesii (C.Vicioso & Pau) Benedí. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Abstract. Question: Does the seed bank filter annual plant composition and determine cover at the species level? Location: 510 m a.s.l., central Spain. Methods: Seven transects and 136 quadrats were established in a semi-arid gypsum system. Seed bank samples were collected in each quadrat in September. The community was sampled the following April. For each quadrat we measured slope, microslope, landform, elevation, perennial cover and crust cover. Seed bank was estimated using the direct emergence method in glasshouse. Relationship among seed bank and annual community was assessed by Mantel correlations. Above-ground cover for the five most abundant species was modelled with GLMs. Results: Seed bank density was the best predictor for annual community cover; perennial cover and landform were also included in the model. Species composition between September seed bank and April annual community cover was also highly related according to the Mantel test. This relationship was constant, even when the effect due to other abiotic (landform, microslope) or biotic (perennial cover, crust cover) parameters were partialled out. Microslope, elevation and seed bank density were the best parameters to predict spring cover of the five most abundant species. Conclusions: Above-ground and below-ground community compartments are strongly related in terms of abundance and species composition. This relationship is filtered by several environmental factors (e.g. perennial cover, landform, microslope) that exert a strong control at community and individual levels. Our results support the hypothesis that annual community performance is affected by seed bank pattern. References Anon. 1992. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. European Community, Brussels , BE . Aguiar, M. R. & Sala, O. E. 1997. Seed distribution constrains the dynamics of the Patagonian steppe. Ecology 78: 93– 100. Baskin, C. C. & Baskin, J. M. 1998. Seeds: Ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego , CA , US . Bertiller, M. B. 1992. Seasonal variation in the seed bank of a Patagonian grassland in relation to grazing and topography. J. Veg. Sci. 3: 47– 54. Caballero, I., Olano, J. M., Loidi, J. & Escudero, A. 2003. Seed bank structure along a semi-arid gypsum gradient in Central Spain. J. Arid Environ. 55: 287– 299. Caballero, I., Olano, J. M., Luzuriaga, A. L. & Escudero, A. In press. Spatial coherence between seasonal seed banks in a semiarid gypsum community: density changes but structure does not. Seed Sci. Res.. Cabin, R. J. 1996. Genetic comparisons of seed bank and seedling populations of a perennial desert mustard, Lesquerella fendleri. Evolution 50: 1830– 1841. Callaway, R. M. 1995. Positive interactions among plants. Bot. Rev. 61: 306– 349. Castroviejo, S., Laínz, M., López González, G., Montserrat, P., Muñoz Garmendia, F., Paiva, J. & Villar, L. 19862005. Flora Iberica: Estudio taxonómico de la Flora de la Península Ibérica e Islas Baleares. Real Jardín Botánico, CSIC, Madrid , ES . Chesson, P. 1994. Multispecies competition in variable environments. Theor. Popul. Biol. 45: 227– 276. Chesson, P. 2000. Mechanism of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31: 343– 366. Childs, S. & Goodall, D. W. 1973. Seed reserves of desert soils. US/IBP Desert Biome Research Memorandum RM : 73– 75. Clark, J. S., Beckage, B., Camill, P., Cleveland, B., HilleRisLambers, J., Lichter, J., McLachlan, J., Mohan, J. & Wyckoff, P. 1999a. Interpreting recruitment limitation in forests. Am. J. Bot. 86: 1– 16. Clark, J. S., Silman, M., Kern, R., Macklin, E. & HilleRisLambers, J. 1999b. Seed dispersal near and far: Patterns across temperate and tropical forests. Ecology 80: 1475– 1494. Clauss, M. J. & Venable, D. L. 2000. Seed germination in desert annuals: an empirical test of adaptative best hedging. Am. Nat. 155: 168– 186. Davies, A. & Waite, S. 1998. The persistence of calcareous grassland species in the soil seed bank under developing and established scrub. Plant Ecol. 136: 27– 39. Debaeke, P. 1988. Population dynamics of some broad-leaved weeds in cereal I. Relation between standing vegetation and soil seed bank. Weed Res. 28: 251– 265. Eriksson, O. & Ehrlén, J. 1992. Seed and microsite limitation of recruitment in plant populations. Oecologia 91: 360– 364. Escudero, A., Iriondo, J. M., Olano, J. M., Rubio, A. & Somolinos, R. 2000. Factors affecting establishment of a gypsophyte: the case of Lepidium subulatum (Brassicaceae). Am. J. Bot. 87: 861– 871. Escudero, A., Somolinos, R. C., Olano, J. M. & Rubio, A. 1999. Factors controlling the establishment of Helianthemum squamatum (L.) Dum., an endemic gypsophite of semi-arid Spain. J. Ecol. 87: 290– 302. Facelli, J. M. & Temby A. M. 2002. Multiple effects of shrubs on annual communities in arid lands of South Australia. Aust. Ecol. 27: 422– 432. Fenner, M. 1985. Seed ecology. Chapman & Hall, London , UK . Flores, J. & Jurado, E. 2003. Are nurse-protégé interactions common among plants from arid environments. J. Veg. Sci. 14: 911– 916. Goldberg, D. H. & Estabrook, G. E. 1998. Separating the effects of number of individuals sampled and competition on species diversity. J. Ecol. 86: 983– 988. Goldberg, D. E., Turkington, R., Olsvig-Whittaker, L. & Dyer, A. R. 2001. Density dependence in an annual plant community: variation among life-stages. Ecol. Monogr. 71: 423– 446. Guerrero-Campo, J., Alberto, F., Hodgson, J., García-Ruiz, J. M. & Montserrat-Martí, G. 1999. Plant community patterns in a gypsum area of NE Spain. I. Interactions with topographic factors and soil erosion. J. Arid Environ. 41: 401– 410. Guo, Q. 1998. Microhabitat differentiation in Chihuahuan Desert plant communities. Plant Ecol. 139: 71– 80. Gutiérrez, J. R. & Meserve, P. L. 2003. El Niño effects on soil seed bank dynamics in north-central Chile. Oecologia 134: 511– 517. Hartmann, H. T. & Kester, D. E. 1999. Propagación de plantas, principios y prácticas. CECS A, México , MX . Henderson, C. B., Petersen, K. E. & Redak R. A. 1998. Spatial and temporal patterns in the seed bank and vegetation of a desert grassland community. J. Ecol. 76: 717– 728. Jankowska-Blaszczuk, M. & Grubb, P. J. 1997. Soil seed banks in primary and secondary deciduous forest in Bialowieza, Poland. Seed Sci. Res. 7: 281– 292. Jutila b. Erkkilä, H. M. 1998. Seed banks of grazed and ungrazed Baltic seashore meadows. J. Veg. Sci. 9: 395– 408. Kalamees, R. & Zobel, M. 2002. The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology 83: 1017– 1025. Kemp, P. R. 1989. Seed banks and vegetation processes in deserts. In M. A. Leek, V. T. Parker & R. L. Simpson (eds.) Ecology of soil seed banks, pp. 257– 281. Academic Press, San Diego , CA , US . Laskurain, N. A., Escudero, J. M., Olano, J. M. & Loidi, J. 2004. Seedling dynamics of shrubs in a fully closed temperate forest: greater than expected. Ecography 7: 650– 658. Legendre, P. & Legendre, L. 1998. Numerical ecology. Elsevier, Amsterdam , NL . Lortie, C. J. & Turkington, R. 2002. The small-scale spatiotemporal pattern of a seed bank in the Negev Desert, Israel. Ecoscience 9: 408– 414. Lortie, C. J. & Turkington, R. 2003. The effect of initial seed density on the structure of a desert annual community. J. Ecol. 90: 435– 445. Luzuriaga, A. L., Escudero, A., Olano, J. M. & Loidi J. 2005. Regenerative function of seed banks following a deep ploughing. Acta Oecol. 27: 57– 66. Maestre, F. T., Cortina, J., Bautista, S., Bellot, J. & Vallejo, R. 2003. Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semiarid degraded ecosystem. Ecosystems 6: 630– 643. Marañón, T. 1998. Soil seed bank and community dynamics in an annual-dominated Mediterranean salt-marsh. J. Veg. Sci. 9: 371– 378. McCullagh, P. & Nelder, J. A. 1989. Generalized linear models. 2nd. ed. Chapman & Hall/CRC Press, Boca Raton , FL , US . Meyer, S. E., García-Moya, E. & Lagunes-Espinoza, L. C. 1992. Topographic and soil surface effects on gypsophile plant community patterns in central Mexico. J. Veg. Sci. 3: 429– 438. Moles, A. T. & Drake, D. R. 1999. Potential contributions of the seed rain and seed bank to regeneration of native forest under plantation pine in New Zealand. N.Z.J. Bot. 37: 83– 93. Monturiol, F. & Alcalá del Olmo, L. 1990. Mapa de asociaciones de suelos de la Comunidad de Madrid. Escala I: 200.000. Consejo Superior de Investigaciones Científicas, Madrid , ES . Morisita, M. 1959. Measuring of the dispersion and analysis of distribution patterns. Mem. Fac. Sci. Kyushu Univ. Ser. E. Biol. 2: 215– 235. Moro, M. J., Pugnaire, F. I., Haase, P. & Puigdefábregas, J. 1997. Mechanisms of interaction between a leguminous shrub and its understorey in a semi-arid environment. Ecography 20: 175– 184. Olano, J. M., Caballero, I., Loidi, J. & Escudero A. 2002. Seed bank spatial pattern in a temperate secondary forest. J. Veg. Sci. 13: 775– 784. Olmsted, N. W. & Curtis, J. D. 1947. Seeds of the forest floor. Ecology 28: 49– 52. Pugnaire, F. I. & Lázaro, R. 2000. Seed bank and understorey species composition in a semi-arid environment: the effect of scrub age and rainfall. Ann. Bot. 86: 807– 813. Pugnaire, F. I., Armas, C. & Valladares, F. 2004. Soil as a mediator in plant-plant interactions in a semi-arid community. J. Veg. Sci. 15: 85– 92. Rivas-Martinez, S. & Loidi, J. 1997. Bioclimatology of the Iberian Peninsula, Iter. Geobot. 13: 41– 47. Romão, R. 2003. Estructura especial de comunidades de gipsófitos: Interacciones bióticas y constricciones abióticas . Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid , ES . Rosenberg, M. S. 2001. PASSAGE. Pattern analysis, spatial statistics and geographic exegesis. Version 1.0. Department of Biology, Arizona State University, Tempe , AZ , US . Rubio, A. & Escudero, A. 2000. Small-scale spatial soil-plant relationship in semi-arid gypsum environment. Plant Soil 220: 139– 150. ter Heerdt, G. N. J., Verweij, G. L., Bekker, R. M. & Bakker, J. P. 1996. An improved method for seed bank analysis: seedling emergence after removing the soil by sieving. Funct. Ecol. 10: 144– 151. Thompson, K., Bakker, J. P. & Bekker, R. M. 1997. The soil seed banks of North West Europe: methodology, density and longevity. Oxford University Press, Oxford , UK . Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M. & Webb, D. A. 19641980. Flora Europaea. Vols. 1–5. Cambridge University Press. Cambridge , UK . Wilson, R., Kerr, E. & Nelson, L. 1985. Potential for using weed seed content to predict future weed problems. Weed Sci. 33: 171– 175. Zobel, M., Otsus, M., Liira, J., Moora, M. & Möls, T. 2000. Is small-scale species richness in a calcareous grassland limited by seed availability or microsite availability? Ecology 81: 3274– 3282. Citing Literature Volume16, Issue2April 2005Pages 215-222 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX