Artigo Acesso aberto Revisado por pares

REGULARITY AND FRACTAL DIMENSION OF PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR DEGENERATE PARABOLIC EQUATION

2013; Cambridge University Press; Volume: 55; Issue: 2 Linguagem: Inglês

10.1017/s0017089512000663

ISSN

1469-509X

Autores

Cung The Anh, Bao Quoc Tang, Lê Thị Thủy,

Tópico(s)

Nonlinear Partial Differential Equations

Resumo

Abstract Considered here is the pullback attractor of the process associated with the first initial boundary value problem for the non-autonomous semilinear degenerate parabolic equation \begin{linenomath} u_t-\text{div}(\sigma(x)\nabla u)+f(u)=g(x,t) \end{linenomath} in a bounded domain Ω in ℝ N (N≥2). We prove the regularity in the space L 2 p −2 (Ω)∩ $D_0^2(\Omega,\sigma)$ , and estimate the fractal dimension of the pullback attractor in L 2 (Ω).

Referência(s)
Altmetric
PlumX