Revisão Acesso aberto Revisado por pares

Triglycerides and Triglyceride-Rich Lipoproteins in the Causal Pathway of Cardiovascular Disease

2016; Elsevier BV; Volume: 118; Issue: 1 Linguagem: Inglês

10.1016/j.amjcard.2016.04.004

ISSN

1879-1913

Autores

Matthew J. Budoff,

Tópico(s)

Diabetes, Cardiovascular Risks, and Lipoproteins

Resumo

Epidemiologic and clinical studies suggest that elevated triglyceride levels are a biomarker of cardiovascular (CV) risk. Consistent with these findings, recent genetic evidence from mutational analyses, genome-wide association studies, and Mendelian randomization studies provide robust evidence that triglycerides and triglyceride-rich lipoproteins are in the causal pathway for atherosclerotic CV disease, indicating that they may play a pathogenic role, much like low-density lipoprotein cholesterol (LDL-C). Although statins are the cornerstone of dyslipidemia management, high triglyceride levels may persist in some patients despite statin therapy. Several triglyceride-lowering agents are available, including fibrates, niacin, and omega-3 fatty acids, of which prescription omega-3 fatty acids have the best tolerability and safety profile. In clinical studies, omega-3 fatty acids have been shown to reduce triglyceride levels, but products containing both eicosapentaenoic acid and docosahexaenoic acid may increase LDL-C levels. Icosapent ethyl, a high-purity eicosapentaenoic acid–only product, does not raise LDL-C levels and also reduces triglyceride, non–high-density lipoprotein cholesterol, and triglyceride-rich lipoprotein levels. In conclusion, omega-3 fatty acids are currently being evaluated in large CV outcome studies in statin-treated patients; these studies should help to elucidate the causative role of triglycerides in atherosclerotic CV disease. Epidemiologic and clinical studies suggest that elevated triglyceride levels are a biomarker of cardiovascular (CV) risk. Consistent with these findings, recent genetic evidence from mutational analyses, genome-wide association studies, and Mendelian randomization studies provide robust evidence that triglycerides and triglyceride-rich lipoproteins are in the causal pathway for atherosclerotic CV disease, indicating that they may play a pathogenic role, much like low-density lipoprotein cholesterol (LDL-C). Although statins are the cornerstone of dyslipidemia management, high triglyceride levels may persist in some patients despite statin therapy. Several triglyceride-lowering agents are available, including fibrates, niacin, and omega-3 fatty acids, of which prescription omega-3 fatty acids have the best tolerability and safety profile. In clinical studies, omega-3 fatty acids have been shown to reduce triglyceride levels, but products containing both eicosapentaenoic acid and docosahexaenoic acid may increase LDL-C levels. Icosapent ethyl, a high-purity eicosapentaenoic acid–only product, does not raise LDL-C levels and also reduces triglyceride, non–high-density lipoprotein cholesterol, and triglyceride-rich lipoprotein levels. In conclusion, omega-3 fatty acids are currently being evaluated in large CV outcome studies in statin-treated patients; these studies should help to elucidate the causative role of triglycerides in atherosclerotic CV disease. Epidemiologic studies have demonstrated that elevated triglyceride levels are independently associated with increased cardiovascular (CV) risk.1Boullart A.C. de G.J. Stalenhoef A.F. Serum triglycerides and risk of cardiovascular disease.Biochim Biophys Acta. 2012; 1821: 867-875Crossref PubMed Scopus (108) Google Scholar Consistent with the epidemiologic data, clinical studies have shown that reaching target triglyceride levels correlates with reduced CV risk.2Miller M. Stone N.J. Ballantyne C. Bittner V. Criqui M.H. Ginsberg H.N. Goldberg A.C. Howard W.J. Jacobson M.S. Kris-Etherton P.M. Lennie T.A. Levi M. Mazzone T. Pennathur S. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association.Circulation. 2011; 123: 2292-2333Crossref PubMed Scopus (1342) Google Scholar Moreover, triglyceride lowering has been associated with reduced CV risk in certain patients with high baseline triglyceride levels.2Miller M. Stone N.J. Ballantyne C. Bittner V. Criqui M.H. Ginsberg H.N. Goldberg A.C. Howard W.J. Jacobson M.S. Kris-Etherton P.M. Lennie T.A. Levi M. Mazzone T. Pennathur S. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association.Circulation. 2011; 123: 2292-2333Crossref PubMed Scopus (1342) Google Scholar Together, these data infer that elevated triglyceride levels are a biomarker of CV risk. However, accumulating evidence reviewed herein suggests that triglycerides and triglyceride-rich lipoproteins (TRLs) are in the causal pathway of atherosclerotic CV disease (ASCVD), indicating that they play a pathogenic role in atherosclerosis rather than simply serving as a biomarker of disease risk. This study provides an overview of TRL metabolism, describes genetic evidence supporting the role of triglycerides and TRLs in the causal pathway of ASCVD, and discusses the relevance of these data for managing patients with dyslipidemia. Triglycerides are major components of TRLs, including very-low-density lipoprotein (VLDL) and chylomicrons, which are synthesized and secreted from the liver and intestinal enterocytes, respectively (Figure 1).3Khetarpal S.A. Rader D.J. Triglyceride-rich lipoproteins and coronary artery disease risk: new insights from human genetics.Arterioscler Thromb Vasc Biol. 2015; 35: e3-e9Crossref PubMed Scopus (49) Google Scholar Lipoprotein lipase (LPL) promotes hydrolysis of the core triglycerides in VLDL and chylomicrons, producing VLDL remnants and chylomicron remnants, both of which are enriched in cholesterol relative to triglycerides.4Wang H. Eckel R.H. Lipoprotein lipase: from gene to obesity.Am J Physiol Endocrinol Metab. 2009; 297: E271-E288Crossref PubMed Scopus (574) Google Scholar Some of these particles may be taken up by the liver and cleared; those that remain in circulation are further modified by LPL and hepatic lipase, resulting in formation of cholesterol-enriched LDL particles.3Khetarpal S.A. Rader D.J. Triglyceride-rich lipoproteins and coronary artery disease risk: new insights from human genetics.Arterioscler Thromb Vasc Biol. 2015; 35: e3-e9Crossref PubMed Scopus (49) Google Scholar In the clinical setting, non–high-density lipoprotein cholesterol (non–HDL-C) reflects the cholesterol content found in all potentially atherogenic lipoproteins but principally in LDL and in the VLDL remnants and chylomicron remnants.5Jacobson T.A. Ito M.K. Maki K.C. Orringer C.E. Bays H.E. Jones P.H. McKenney J.M. Grundy S.M. Gill E.A. Wild R.A. Wilson D.P. Brown W.V. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1-executive summary.J Clin Lipidol. 2014; 8: 473-488Abstract Full Text Full Text PDF PubMed Scopus (367) Google Scholar Therefore, to calculate remnant cholesterol (the cholesterol content found in the VLDL remnants and chylomicron remnants), the LDL cholesterol (LDL-C) level may be simply subtracted from the non–HDL-C level. As with LDL particles, VLDL remnants and chylomicron remnants can be taken up by macrophages in the arterial wall, where they may contribute to vascular inflammation and atherosclerotic plaque development and progression; however, unlike LDL particles, remnant particles do not require oxidative modification for this to occur.3Khetarpal S.A. Rader D.J. Triglyceride-rich lipoproteins and coronary artery disease risk: new insights from human genetics.Arterioscler Thromb Vasc Biol. 2015; 35: e3-e9Crossref PubMed Scopus (49) Google Scholar Several apolipoproteins (Apos) are components of VLDL and chylomicrons and are important in TRL metabolism. ApoC-II is a cofactor necessary for full activation of LPL,4Wang H. Eckel R.H. Lipoprotein lipase: from gene to obesity.Am J Physiol Endocrinol Metab. 2009; 297: E271-E288Crossref PubMed Scopus (574) Google Scholar whereas ApoA-V appears to enhance LPL activity, possibly by facilitating interactions between LPL and TRLs. In contrast, ApoC-III inhibits LPL and may also contribute to hepatic VLDL assembly and secretion.3Khetarpal S.A. Rader D.J. Triglyceride-rich lipoproteins and coronary artery disease risk: new insights from human genetics.Arterioscler Thromb Vasc Biol. 2015; 35: e3-e9Crossref PubMed Scopus (49) Google Scholar The angiopoietin-like proteins ANGPTL3 and ANGPTL4 are secreted proteins that also inhibit LPL activity, potentially leading to increased triglyceride levels.3Khetarpal S.A. Rader D.J. Triglyceride-rich lipoproteins and coronary artery disease risk: new insights from human genetics.Arterioscler Thromb Vasc Biol. 2015; 35: e3-e9Crossref PubMed Scopus (49) Google Scholar, 4Wang H. Eckel R.H. Lipoprotein lipase: from gene to obesity.Am J Physiol Endocrinol Metab. 2009; 297: E271-E288Crossref PubMed Scopus (574) Google Scholar Importantly, genetic alterations in these factors may have a substantial impact on TRL metabolism and triglyceride levels, and in turn, on atherosclerotic processes and CV outcomes. In addition, recent data from the Jackson Heart Study demonstrated that the ApoA-I/remnant ratio was strongly associated with coronary heart disease incidence.6May H.T. Nelson J.R. Lirette S.T. Kulkarni K.R. Anderson J.L. Griswold M.E. Horne B.D. Correa A. Muhlestein J.B. The utility of the apolipoprotein A1 remnant ratio in predicting incidence coronary heart disease in a primary prevention cohort: the Jackson Heart Study.Eur J Prev Cardiol. 2016; 23: 769-776Crossref PubMed Scopus (3) Google Scholar Genetic variants in LPL and Apos involved in TRL metabolism have been identified and allow further evaluation of whether triglycerides and TRLs are involved in the causal pathway of ASCVD (Table 1, Table 2, Table 3).7Pollin T.I. Damcott C.M. Shen H. Ott S.H. Shelton J. Horenstein R.B. Post W. McLenithan J.C. Bielak L.F. Peyser P.A. Mitchell B.D. Miller M. O'Connell J.R. Shuldiner A.R. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection.Science. 2008; 322: 1702-1705Crossref PubMed Scopus (519) Google Scholar, 8Jorgensen A.B. Frikke-Schmidt R. Nordestgaard B.G. Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease.N Engl J Med. 2014; 371: 32-41Crossref PubMed Scopus (636) Google Scholar, 9Crosby J. Peloso G.M. Auer P.L. Crosslin D.R. Stitziel N.O. Lange L.A. Lu Y. Tang Z.Z. Zhang H. Hindy G. Masca N. Stirrups K. Kanoni S. Do R. Jun G. Hu Y. Kang H.M. Xue C. Goel A. Farrall M. Duga S. Merlini P.A. Asselta R. Girelli D. Olivieri O. Martinelli N. Yin W. Reilly D. Speliotes E. Fox C.S. Hveem K. Holmen O.L. Nikpay M. Farlow D.N. Assimes T.L. Franceschini N. Robinson J. North K.E. Martin L.W. DePristo M. Gupta N. Escher S.A. Jansson J.H. Van Z.N. Palmer C.N. Wareham N. Koch W. Meitinger T. Peters A. Lieb W. Erbel R. Konig I.R. Kruppa J. Degenhardt F. Gottesman O. Bottinger E.P. O'Donnell C.J. Psaty B.M. Ballantyne C.M. Abecasis G. Ordovas J.M. Melander O. Watkins H. Orho-Melander M. Ardissino D. Loos R.J. McPherson R. Willer C.J. Erdmann J. Hall A.S. Samani N.J. Deloukas P. Schunkert H. Wilson J.G. Kooperberg C. Rich S.S. Tracy R.P. Lin D.Y. Altshuler D. Gabriel S. Nickerson D.A. Jarvik G.P. Cupples L.A. Reiner A.P. Boerwinkle E. Kathiresan S. Loss-of-function mutations in APOC3, triglycerides, and coronary disease.N Engl J Med. 2014; 371: 22-31Crossref PubMed Scopus (750) Google Scholar, 10Natarajan P. Kohli P. Baber U. Nguyen K.D. Sartori S. Reilly D.F. Mehran R. Muntendam P. Fuster V. Rader D.J. Kathiresan S. Association of APOC3 loss-of-function mutations with plasma lipids and subclinical atherosclerosis.J Am Coll Cardiol. 2015; 66: 2053-2055Crossref PubMed Scopus (37) Google Scholar, 11Do R. Stitziel N.O. Won H.H. Jorgensen A.B. Duga S. Angelica M.P. Kiezun A. Farrall M. Goel A. Zuk O. Guella I. Asselta R. Lange L.A. Peloso G.M. Auer P.L. Girelli D. Martinelli N. Farlow D.N. DePristo M.A. Roberts R. Stewart A.F. Saleheen D. Danesh J. Epstein S.E. Sivapalaratnam S. Hovingh G.K. Kastelein J.J. Samani N.J. Schunkert H. Erdmann J. Shah S.H. Kraus W.E. Davies R. Nikpay M. Johansen C.T. Wang J. Hegele R.A. Hechter E. Marz W. Kleber M.E. Huang J. Johnson A.D. Li M. Burke G.L. Gross M. Liu Y. Assimes T.L. Heiss G. Lange E.M. Folsom A.R. Taylor H.A. Olivieri O. Hamsten A. Clarke R. Reilly D.F. Yin W. Rivas M.A. Donnelly P. Rossouw J.E. Psaty B.M. Herrington D.M. Wilson J.G. Rich S.S. Bamshad M.J. Tracy R.P. Cupples L.A. Rader D.J. Reilly M.P. Spertus J.A. Cresci S. Hartiala J. Tang W.H. Hazen S.L. Allayee H. Reiner A.P. Carlson C.S. Kooperberg C. Jackson R.D. Boerwinkle E. Lander E.S. Schwartz S.M. Siscovick D.S. McPherson R. Tybjaerg-Hansen A. Abecasis G.R. Watkins H. Nickerson D.A. Ardissino D. Sunyaev S.R. O'Donnell C.J. Altshuler D. Gabriel S. Kathiresan S. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction.Nature. 2015; 518: 102-106Crossref PubMed Scopus (483) Google Scholar, 12Sarwar N. Sandhu M.S. Ricketts S.L. Butterworth A.S. Di A.E. Boekholdt S.M. Ouwehand W. Watkins H. Samani N.J. Saleheen D. Lawlor D. Reilly M.P. Hingorani A.D. Talmud P.J. Danesh J. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies.Lancet. 2010; 375: 1634-1639Abstract Full Text Full Text PDF PubMed Scopus (549) Google Scholar, 13Dewey F.E. Gusarova V. O'Dushlaine C. Gottesman O. Trejos J. Hunt C. Van Hout C.V. Habegger L. Buckler D. Lai K.M.V. Leader J.B. Murray M.F. Ritchie M.D. Kirchner H.L. Ledbetter D.H. Penn J. Lopez A. Borecki I.B. Overton J.D. Reid J.G. Carey D.J. Murphy A.J. Yancopoulos G.D. Baras A. Gromada J. Shuldiner A.R. Inactivating variants in ANGPTL4 and risk of coronary artery disease.N Engl J Med. 2016; 374: 1123-1133Crossref PubMed Scopus (310) Google Scholar, 14Stitziel N. Stirrups K. Masca N. Erdmann J. Kathiresan S. Deloukas P. Samani N.J. Schunkert H. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease.N Engl J Med. 2016; 374: 1134-1144Crossref PubMed Scopus (340) Google Scholar, 15Teslovich T.M. Musunuru K. Smith A.V. Edmondson A.C. Stylianou I.M. Koseki M. Pirruccello J.P. Ripatti S. Chasman D.I. Willer C.J. Johansen C.T. Fouchier S.W. Isaacs A. Peloso G.M. Barbalic M. Ricketts S.L. Bis J.C. Aulchenko Y.S. Thorleifsson G. Feitosa M.F. Chambers J. Orho-Melander M. Melander O. Johnson T. Li X. Guo X. Li M. Shin C.Y. Jin G.M. Jin K.Y. Lee J.Y. Park T. Kim K. Sim X. Twee-Hee O.R. Croteau-Chonka D.C. Lange L.A. Smith J.D. Song K. Hua Z.J. Yuan X. Luan J. Lamina C. Ziegler A. Zhang W. Zee R.Y. Wright A.F. Witteman J.C. Wilson J.F. Willemsen G. Wichmann H.E. Whitfield J.B. Waterworth D.M. Wareham N.J. Waeber G. Vollenweider P. Voight B.F. Vitart V. Uitterlinden A.G. Uda M. Tuomilehto J. Thompson J.R. Tanaka T. Surakka I. Stringham H.M. Spector T.D. Soranzo N. Smit J.H. Sinisalo J. Silander K. Sijbrands E.J. Scuteri A. Scott J. Schlessinger D. Sanna S. Salomaa V. Saharinen J. Sabatti C. Ruokonen A. Rudan I. Rose L.M. Roberts R. Rieder M. Psaty B.M. Pramstaller P.P. Pichler I. Perola M. Penninx B.W. Pedersen N.L. Pattaro C. Parker A.N. Pare G. Oostra B.A. O'Donnell C.J. Nieminen M.S. Nickerson D.A. Montgomery G.W. Meitinger T. McPherson R. McCarthy M.I. McArdle W. Masson D. Martin N.G. Marroni F. Mangino M. Magnusson P.K. Lucas G. Luben R. Loos R.J. Lokki M.L. Lettre G. Langenberg C. Launer L.J. Lakatta E.G. Laaksonen R. Kyvik K.O. Kronenberg F. Konig I.R. Khaw K.T. Kaprio J. Kaplan L.M. Johansson A. Jarvelin M.R. Janssens A.C. Ingelsson E. Igl W. Kees H.G. Hottenga J.J. Hofman A. Hicks A.A. Hengstenberg C. Heid I.M. Hayward C. Havulinna A.S. Hastie N.D. Harris T.B. Haritunians T. Hall A.S. Gyllensten U. Guiducci C. Groop L.C. Gonzalez E. Gieger C. Freimer N.B. Ferrucci L. Erdmann J. Elliott P. Ejebe K.G. Doring A. Dominiczak A.F. Demissie S. Deloukas P. de Geus E.J. de Faire U. Crawford G. Collins F.S. Chen Y.D. Caulfield M.J. Campbell H. Burtt N.P. Bonnycastle L.L. Boomsma D.I. Boekholdt S.M. Bergman R.N. Barroso I. Bandinelli S. Ballantyne C.M. Assimes T.L. Quertermous T. Altshuler D. Seielstad M. Wong T.Y. Tai E.S. Feranil A.B. Kuzawa C.W. Adair L.S. Taylor Jr., H.A. Borecki I.B. Gabriel S.B. Wilson J.G. Holm H. Thorsteinsdottir U. Gudnason V. Krauss R.M. Mohlke K.L. Ordovas J.M. Munroe P.B. Kooner J.S. Tall A.R. Hegele R.A. Kastelein J.J. Schadt E.E. Rotter J.I. Boerwinkle E. Strachan D.P. Mooser V. Stefansson K. Reilly M.P. Samani N.J. Schunkert H. Cupples L.A. Sandhu M.S. Ridker P.M. Rader D.J. van Duijn C.M. Peltonen L. Abecasis G.R. Boehnke M. Kathiresan S. Biological, clinical and population relevance of 95 loci for blood lipids.Nature. 2010; 466: 707-713Crossref PubMed Scopus (2781) Google Scholar, 16Schunkert H. Konig I.R. Kathiresan S. Reilly M.P. Assimes T.L. Holm H. Preuss M. Stewart A.F. Barbalic M. Gieger C. Absher D. Aherrahrou Z. Allayee H. Altshuler D. Anand S.S. Andersen K. Anderson J.L. Ardissino D. Ball S.G. Balmforth A.J. Barnes T.A. Becker D.M. Becker L.C. Berger K. Bis J.C. Boekholdt S.M. Boerwinkle E. Braund P.S. Brown M.J. Burnett M.S. Buysschaert I. Carlquist J.F. Chen L. Cichon S. Codd V. Davies R.W. Dedoussis G. Dehghan A. Demissie S. Devaney J.M. Diemert P. Do R. Doering A. Eifert S. Mokhtari N.E. Ellis S.G. Elosua R. Engert J.C. Epstein S.E. de Faire U. Fischer M. Folsom A.R. Freyer J. Gigante B. Girelli D. Gretarsdottir S. Gudnason V. Gulcher J.R. Halperin E. Hammond N. Hazen S.L. Hofman A. Horne B.D. Illig T. Iribarren C. Jones G.T. Jukema J.W. Kaiser M.A. Kaplan L.M. Kastelein J.J. Khaw K.T. Knowles J.W. Kolovou G. Kong A. Laaksonen R. Lambrechts D. Leander K. Lettre G. Li M. Lieb W. Loley C. Lotery A.J. Mannucci P.M. Maouche S. Martinelli N. McKeown P.P. Meisinger C. Meitinger T. Melander O. Merlini P.A. Mooser V. Morgan T. Muhleisen T.W. Muhlestein J.B. Munzel T. Musunuru K. Nahrstaedt J. Nelson C.P. Nothen M.M. Olivieri O. Patel R.S. Patterson C.C. Peters A. Peyvandi F. Qu L. Quyyumi A.A. Rader D.J. Rallidis L.S. Rice C. Rosendaal F.R. Rubin D. Salomaa V. Sampietro M.L. Sandhu M.S. Schadt E. Schafer A. Schillert A. Schreiber S. Schrezenmeir J. Schwartz S.M. Siscovick D.S. Sivananthan M. Sivapalaratnam S. Smith A. Smith T.B. Snoep J.D. Soranzo N. Spertus J.A. Stark K. Stirrups K. Stoll M. Tang W.H. Tennstedt S. Thorgeirsson G. Thorleifsson G. Tomaszewski M. Uitterlinden A.G. van Rij A.M. Voight B.F. Wareham N.J. Wells G.A. Wichmann H.E. Wild P.S. Willenborg C. Witteman J.C. Wright B.J. Ye S. Zeller T. Ziegler A. Cambien F. Goodall A.H. Cupples L.A. Quertermous T. Marz W. Hengstenberg C. Blankenberg S. Ouwehand W.H. Hall A.S. Deloukas P. Thompson J.R. Stefansson K. Roberts R. Thorsteinsdottir U. O'Donnell C.J. McPherson R. Erdmann J. Samani N.J. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease.Nat Genet. 2011; 43: 333-338Crossref PubMed Scopus (1388) Google Scholar, 17Willer C.J. Schmidt E.M. Sengupta S. Peloso G.M. Gustafsson S. Kanoni S. Ganna A. Chen J. Buchkovich M.L. Mora S. Beckmann J.S. Bragg-Gresham J.L. Chang H.Y. Demirkan A. Den Hertog H.M. Do R. Donnelly L.A. Ehret G.B. Esko T. Feitosa M.F. Ferreira T. Fischer K. Fontanillas P. Fraser R.M. Freitag D.F. Gurdasani D. Heikkila K. Hypponen E. Isaacs A. Jackson A.U. Johansson A. Johnson T. Kaakinen M. Kettunen J. Kleber M.E. Li X. Luan J. Lyytikainen L.P. Magnusson P.K. Mangino M. Mihailov E. Montasser M.E. Muller-Nurasyid M. Nolte I.M. O'Connell J.R. Palmer C.D. Perola M. Petersen A.K. Sanna S. Saxena R. Service S.K. Shah S. Shungin D. Sidore C. Song C. Strawbridge R.J. Surakka I. Tanaka T. Teslovich T.M. Thorleifsson G. Van den Herik E.G. Voight B.F. Volcik K.A. Waite L.L. Wong A. Wu Y. Zhang W. Absher D. Asiki G. Barroso I. Been L.F. Bolton J.L. Bonnycastle L.L. Brambilla P. Burnett M.S. Cesana G. Dimitriou M. Doney A.S. Doring A. Elliott P. Epstein S.E. Eyjolfsson G.I. Gigante B. Goodarzi M.O. Grallert H. Gravito M.L. Groves C.J. Hallmans G. Hartikainen A.L. Hayward C. Hernandez D. Hicks A.A. Holm H. Hung Y.J. Illig T. Jones M.R. Kaleebu P. Kastelein J.J. Khaw K.T. Kim E. Klopp N. Komulainen P. Kumari M. Langenberg C. Lehtimaki T. Lin S.Y. Lindstrom J. Loos R.J. Mach F. McArdle W.L. Meisinger C. Mitchell B.D. Muller G. Nagaraja R. Narisu N. Nieminen T.V. Nsubuga R.N. Olafsson I. Ong K.K. Palotie A. Papamarkou T. Pomilla C. Pouta A. Rader D.J. Reilly M.P. Ridker P.M. Rivadeneira F. Rudan I. Ruokonen A. Samani N. Scharnagl H. Seeley J. Silander K. Stancakova A. Stirrups K. Swift A.J. Tiret L. Uitterlinden A.G. van Pelt L.J. Vedantam S. Wainwright N. Wijmenga C. Wild S.H. Willemsen G. Wilsgaard T. Wilson J.F. Young E.H. Zhao J.H. Adair L.S. Arveiler D. Assimes T.L. Bandinelli S. Bennett F. Bochud M. Boehm B.O. Boomsma D.I. Borecki I.B. Bornstein S.R. Bovet P. Burnier M. Campbell H. Chakravarti A. Chambers J.C. Chen Y.D. Collins F.S. Cooper R.S. Danesh J. Dedoussis G. de Faire U. Feranil A.B. Ferrieres J. Ferrucci L. Freimer N.B. Gieger C. Groop L.C. Gudnason V. Gyllensten U. Hamsten A. Harris T.B. Hingorani A. Hirschhorn J.N. Hofman A. Hovingh G.K. Hsiung C.A. Humphries S.E. Hunt S.C. Hveem K. Iribarren C. Jarvelin M.R. Jula A. Kahonen M. Kaprio J. Kesaniemi A. Kivimaki M. Kooner J.S. Koudstaal P.J. Krauss R.M. Kuh D. Kuusisto J. Kyvik K.O. Laakso M. Lakka T.A. Lind L. Lindgren C.M. Martin N.G. Marz W. McCarthy M.I. McKenzie C.A. Meneton P. Metspalu A. Moilanen L. Morris A.D. Munroe P.B. Njolstad I. Pedersen N.L. Power C. Pramstaller P.P. Price J.F. Psaty B.M. Quertermous T. Rauramaa R. Saleheen D. Salomaa V. Sanghera D.K. Saramies J. Schwarz P.E. Sheu W.H. Shuldiner A.R. Siegbahn A. Spector T.D. Stefansson K. Strachan D.P. Tayo B.O. Tremoli E. Tuomilehto J. Uusitupa M. van Duijn C.M. Vollenweider P. Wallentin L. Wareham N.J. Whitfield J.B. Wolffenbuttel B.H. Ordovas J.M. Boerwinkle E. Palmer C.N. Thorsteinsdottir U. Chasman D.I. Rotter J.I. Franks P.W. Ripatti S. Cupples L.A. Sandhu M.S. Rich S.S. Boehnke M. Deloukas P. Discovery and refinement of loci associated with lipid levels.Nat Genet. 2013; 45: 1274-1283Crossref PubMed Scopus (1875) Google Scholar, 18Do R. Willer C.J. Schmidt E.M. Sengupta S. Gao C. Peloso G.M. Gustafsson S. Kanoni S. Ganna A. Chen J. Buchkovich M.L. Mora S. Beckmann J.S. Bragg-Gresham J.L. Chang H.Y. Demirkan A. Den Hertog H.M. Donnelly L.A. Ehret G.B. Esko T. Feitosa M.F. Ferreira T. Fischer K. Fontanillas P. Fraser R.M. Freitag D.F. Gurdasani D. Heikkila K. Hypponen E. Isaacs A. Jackson A.U. Johansson A. Johnson T. Kaakinen M. Kettunen J. Kleber M.E. Li X. Luan J. Lyytikainen L.P. Magnusson P.K. Mangino M. Mihailov E. Montasser M.E. Muller-Nurasyid M. Nolte I.M. O'Connell J.R. Palmer C.D. Perola M. Petersen A.K. Sanna S. Saxena R. Service S.K. Shah S. Shungin D. Sidore C. Song C. Strawbridge R.J. Surakka I. Tanaka T. Teslovich T.M. Thorleifsson G. Van den Herik E.G. Voight B.F. Volcik K.A. Waite L.L. Wong A. Wu Y. Zhang W. Absher D. Asiki G. Barroso I. Been L.F. Bolton J.L. Bonnycastle L.L. Brambilla P. Burnett M.S. Cesana G. Dimitriou M. Doney A.S. Doring A. Elliott P. Epstein S.E. Eyjolfsson G.I. Gigante B. Goodarzi M.O. Grallert H. Gravito M.L. Groves C.J. Hallmans G. Hartikainen A.L. Hayward C. Hernandez D. Hicks A.A. Holm H. Hung Y.J. Illig T. Jones M.R. Kaleebu P. Kastelein J.J. Khaw K.T. Kim E. Klopp N. Komulainen P. Kumari M. Langenberg C. Lehtimaki T. Lin S.Y. Lindstrom J. Loos R.J. Mach F. McArdle W.L. Meisinger C. Mitchell B.D. Muller G. Nagaraja R. Narisu N. Nieminen T.V. Nsubuga R.N. Olafsson I. Ong K.K. Palotie A. Papamarkou T. Pomilla C. Pouta A. Rader D.J. Reilly M.P. Ridker P.M. Rivadeneira F. Rudan I. Ruokonen A. Samani N. Scharnagl H. Seeley J. Silander K. Stancakova A. Stirrups K. Swift A.J. Tiret L. Uitterlinden A.G. van Pelt L.J. Vedantam S. Wainwright N. Wijmenga C. Wild S.H. Willemsen G. Wilsgaard T. Wilson J.F. Young E.H. Zhao J.H. Adair L.S. Arveiler D. Assimes T.L. Bandinelli S. Bennett F. Bochud M. Boehm B.O. Boomsma D.I. Borecki I.B. Bornstein S.R. Bovet P. Burnier M. Campbell H. Chakravarti A. Chambers J.C. Chen Y.D. Collins F.S. Cooper R.S. Danesh J. Dedoussis G. de Faire U. Feranil A.B. Ferrieres J. Ferrucci L. Freimer N.B. Gieger C. Groop L.C. Gudnason V. Gyllensten U. Hamsten A. Harris T.B. Hingorani A. Hirschhorn J.N. Hofman A. Hovingh G.K. Hsiung C.A. Humphries S.E. Hunt S.C. Hveem K. Iribarren C. Jarvelin M.R. Jula A. Kahonen M. Kaprio J. Kesaniemi A. Kivimaki M. Kooner J.S. Koudstaal P.J. Krauss R.M. Kuh D. Kuusisto J. Kyvik K.O. Laakso M. Lakka T.A. Lind L. Lindgren C.M. Martin N.G. Marz W. McCarthy M.I. McKenzie C.A. Meneton P. Metspalu A. Moilanen L. Morris A.D. Munroe P.B. Njolstad I. Pedersen N.L. Power C. Pramstaller P.P. Price J.F. Psaty B.M. Quertermous T. Rauramaa R. Saleheen D. Salomaa V. Sanghera D.K. Saramies J. Schwarz P.E. Sheu W.H. Shuldiner A.R. Siegbahn A. Spector T.D. Stefansson K. Strachan D.P. Tayo B.O. Tremoli E. Tuomilehto J. Uusitupa M. van Duijn C.M. Vollenweider P. Wallentin L. Wareham N.J. Whitfield J.B. Wolffenbuttel B.H. Altshuler D. Ordovas J.M. Boerwinkle E. Palmer C.N. Thorsteinsdottir U. Chasman D.I. Rotter J.I. Franks P.W. Ripatti S. Cupples L.A. Sandhu M.S. Rich S.S. Common variants associated with plasma triglycerides and risk for coronary artery disease.Nat Genet. 2013; 45: 1345-1352Crossref PubMed Scopus (610) Google Scholar, 19Jorgensen A.B. Frikke-Schmidt R. West A.S. Grande P. Nordestgaard B.G. Tybjaerg-Hansen A. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction.Eur Heart J. 2013; 34: 1826-1833Crossref PubMed Scopus (282) Google Scholar, 20Varbo A. Benn M. Tybjaerg-Hansen A. Jorgensen A.B. Frikke-Schmidt R. Nordestgaard B.G. Remnant cholesterol as a causal risk factor for ischemic heart disease.J Am Coll Cardiol. 2013; 61: 427-436Abstract Full Text Full Text PDF PubMed Scopus (623) Google Scholar, 21Varbo A. Benn M. Tybjaerg-Hansen A. Nordestgaard B.G. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation.Circulation. 2013; 128: 1298-1309Crossref PubMed Scopus (284) Google Scholar, 22Thomsen M. Varbo A. Tybjaerg-Hansen A. Nordestgaard B.G. Low nonfasting triglycerides and reduced all-cause mortality: a Mendelian randomization study.Clin Chem. 2014; 60: 737-746Crossref PubMed Scopus (119) Google Scholar, 23Holmes M.V. Asselbergs F.W. Palmer T.M. Drenos F. Lanktree M.B. Nelson C.P. Dale C.E. Padmanabhan S. Finan C. Swerdlow D.I. Tragante V. van Iperen E.P. Sivapalaratnam S. Shah S. Elbers C.C. Shah T. Engmann J. Giambartolomei C. White J. Zabaneh D. Sofat R. McLachlan S. Doevendans P.A. Balmforth A.J. Hall A.S. North K.E. Almoguera B. Hoogeveen R.C. Cushman M. Fornage M. Patel S.R. Redline S. Siscovick D.S. Tsai M.Y. Karczewski K.J. Hofker M.H. Verschuren W.M. Bots M.L. van der Schouw Y.T. Melander O. Dominiczak A.F. Morris R. Ben-Shlomo Y. Price J. Kumari M. Baumert J. Peters A. Thorand B. Koenig W. Gaunt T.R. Humphries S.E. Clarke R. Watkins H. Farrall M. Wilson J.G. Rich S.S. de Bakker P.I. Lange L.A. Davey S.G. Reiner A.P. Talmud P.J. Kivimaki M. Lawlor D.A. Dudbridge F. Samani N.J. Keating B.J. Hingorani A.D. Casas J.P. Mendelian randomization of blood lipids for coronary heart disease.Eur Heart J. 2015; 36: 539-550Crossref PubMed Scopus (421) Google Scholar Genetic data may be considered particularly compelling for evaluating whether a lipid biomarker is causally related to disease. Evaluation as to whether specific individual genetic loci are causally related to disease can overcome limitations associated with establishing causal inferences based on observational epidemiologic studies (e.g., reverse causation arising from interrelations among LDL-C, HDL-C, and triglycerides). Moreover, genetic data are not limited by confounding design issues that may complicate clinical studies, such as the use of inappropriate study populations, insufficient magnitude of triglyceride lowering, and limited statistical power.Table 1Genetic data supporting causative role of triglycerides in atherosclerotic cardiovascular disease: mutational analysesReferenceNVariableEffect on TGsEffect on Cardiovascular OutcomePollin 20087Pollin T.I. Damcott C.M. Shen H. Ott S.H. Shelton J. Horenstein R.B. Post W. McLenithan J.C. Bielak L.F. Peyser P.A. Mitchell B.D. Miller M. O'Connell J.R. Shuldiner A.R. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection.Science. 2008; 322: 1702-1705Crossref PubMed Scopus (519) Google Scholar809ApoC-III R19X null mutation–46%(P=4 × 10-13)CAC: OR=0.35 (95% CI: 0.21–0.60; P=0.002)Jorgensen 20148Jorgensen A.B. Frikke-Schmidt R. Nordestgaard B.G. Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease.N Engl J Med. 2014; 371: 32-41Crossref PubMed Scopus (636) Google Scholar75,725ApoC-III null mutations–44%(P<0.001)IVD: HR=0.59 (95% CI: 0.41–0.86; P=0.007)IHD: HR=0.64 (95% CI: 0.41–0.99; P=0.04)Crosby 20149Crosby J. Peloso G.M. Auer P.L. Crosslin D.R. Stitziel N.O. Lange L.A. Lu Y. Tang Z.Z. Zhang H. Hindy G. Masca N. Stirrups K. Kanoni S. Do R. Jun G. Hu Y. Kang H.M. Xue C. Goel A. Farrall M. Duga S. Merlini P.A. Asselta R. Girelli D. Olivieri O. Martinelli N. Yin W. Reilly D. Speliotes E. Fox C.S. Hveem K. Holmen O.L. Nikpay M. Farlow D.N. Assimes T.L. Franceschini N. Robinson J. North K.E. Martin L.W. DePristo M. Gupta N. Escher S.A. Jansson J.H. Van Z.N. Palmer C.N. Wareham N. Koch W. Meitinger T. Peters A. Lieb W. Erbel R. Konig I.R. Kruppa J. Degenhardt F. Gottesman O. Bottinger E.P. O'Donnell C.J. Psaty B.M. Ballantyne C.M. Abecasis G. Ordovas J.M. Melander O. Watkins H. Orho-Melander M. Ardissino D. Loos R.J. McPherson R. Willer C.J. Erdmann J. Hall A.S. Samani N.J. Deloukas P. Schunkert H. Wilson J.G. Kooperberg C. Rich S.S. Tracy R.P. Lin D.Y. Altshuler D. Gabriel S. Nickerson D.A. Jarvik G.P. Cupples L.A. Reiner A.P. Boerwinkle E. K

Referência(s)