EWMA Document: Antimicrobials and Non-healing Wounds: Evidence, controversies and suggestions
2013; Mark Allen Group; Volume: 22; Issue: Sup5 Linguagem: Inglês
10.12968/jowc.2013.22.sup5.s1
ISSN2052-2916
AutoresFinn Gottrup, Jan Apelqvist, Thomas Bjarnsholt, Rose Cooper, Zena Moore, Edgar J.G. Peters, Sebastian Probst,
Tópico(s)Diagnosis and Treatment of Venous Diseases
ResumoJournal of Wound CareVol. 22, No. Sup5 EWMA Document: Antimicrobials and Non-healing Wounds: Evidence, controversies and suggestionsis corrected byEWMA Document: Antimicrobials and Non-healing Wounds – Evidence, Controversies and Suggestions.F Gottrup, J Apelqvist, T Bjarnsholt, R Cooper, Z Moore, E.J.G. Peters, S ProbstF GottrupSearch for more papers by this author, J ApelqvistSearch for more papers by this author, T BjarnsholtSearch for more papers by this author, R CooperSearch for more papers by this author, Z MooreSearch for more papers by this author, E.J.G. PetersSearch for more papers by this author, S ProbstSearch for more papers by this authorF Gottrup; J Apelqvist; T Bjarnsholt; R Cooper; Z Moore; E.J.G. Peters; S ProbstPublished Online:1 Jul 2014https://doi.org/10.12968/jowc.2013.22.Sup5.S1AboutSectionsView articleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareShare onFacebookTwitterLinked InEmail View article References 1 Dale, J.J., Callam, M.J., Ruckley, C.V. et al.. Chronic ulcers of the leg: a study of prevalence in a Scottish community. Health Bull (Edinb). 1983; 41: 310–314. Medline, Google Scholar2 Gottrup, F. A specialized wound-healing center concepts: importance of a multidisciplinary department structure and surgical treatment facilities in the treatment of chronic wounds. Am J Surg. 2004; 187: 38–43. Crossref, Medline, Google Scholar3 Hjort, A., Gottrup, F. Cost of wound treatment to increase significantly in Denmark over the next decade. J Wound Care. 2010; 19: 173–184. Link, Google Scholar4 Posnett, J., Gottrup, F., Lundgren, H., Saal, G. The resource impact of wounds on health-care providers in Europe. J Wound Care. 2009; 18: 154–161. Link, Google Scholar5 European Commission—Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Assessment of the Antibiotic Resistance Effects of Biocides, 2009. Google Scholar6 Mossialos, E., Morel, C.M., Edwards, S. et al.. Policies and incentives for promoting innovation in antibiotic research. World Health Organization—on behalf of the European Observatory on Health Systems and Policies, 2010. Google Scholar7 Danish Presidency of the Council of the European Union 2012. Combating Antimicrobial Resistance—Time for Joint Action, 2012. Google Scholar8 European Commission. Report from the Commission to the Council on the basis of Member States' reports on the implementation of the Council Recommendation (2009/C 151/01) on patient safety, including the prevention and control of healthcare associated infections. European Commission, 2012. Google Scholar9 European Union. Council conclusions of 1 December 2009 on innovative incentives for effective antibiotics (2009/C 302/05). European Union, 2009. Google Scholar10 ReAct—Action on Antibiotic Resistance. Cure with Care: Understanding Antibiotic Resistance. Uppsala University, 2007. Google Scholar11 European Academies Science Advisory Council (EASAC). The Royal Society Tackling Antibiotic Resistance in Europe. EASAC, 2007. Google Scholar12 Vicente, M. The fallacies of hope: will we discover new antibiotics to combat pathogenic bacteria in time. FEMS Microbiol Rev. 2006; 30: 841–852. Crossref, Medline, Google Scholar13 Cosgrove, S., Carmeli, S. The impact of antimicrobial resistance on health and economic outcomes; Clin Infect Dis. 2003; 36: 1433–1437. Crossref, Medline, Google Scholar14 European Antimicrobial Resistance Surveillance System (EARSS). EARSS Annual Report 2006. EARSS, 2007. Google Scholar15 Gottrup, F., Apelqvist, J., Price, P. Outcomes in controlled and comparative studies on non-healing wounds: recommendations to improve the quality of evidence in wound management. J Wound Care. 2010; 19: 239–268. Link, Google Scholar16 Burmolle, M., Thomsen, T.R., Fazli, M. et al.. Biofilms in chronic infections—a matter of opportunity - monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol. 2010; 59: 324–336. Crossref, Medline, Google Scholar17 Lee, B.Y. The Wound Management Manual. McGraw-Hill, 2005. Google Scholar18 Polit, D.F., Beck, C.T. Nursing research: Generating and assessing evidence for nursing practice (9th edn). Lippincott Williams & Wilkins 2012. Google Scholar19 Leaper, D.J. Defining infection. J Wound Care. 1998; 7: 373. Link, Google Scholar20 Altemeier, W. Sepsis in surgery (Presidential address). Arch Surg. 1982; 117: 107–112. Crossref, Medline, Google Scholar21 Brennan, S., Leaper, D. The effect of antiseptics on the healing wound: a study using the rabbit ear chamber. Br J Surg. 1985; 72: 780–782. Crossref, Medline, Google Scholar22 Lineaweaver, W., Howard, R., Soucy, D. et al.. Topical antimicrobial toxicity. Arch Surg. 1985; 120: 267–270. Crossref, Medline, Google Scholar23 Mertz, P., Ovington, L. Wound healing microbiology. Dermatol Clin.1993; 11: 739–747. Crossref, Medline, Google Scholar24 Hansson, C., Hoborn, J., Möller, A., Swanbeck, G. The microbial flora in venous leg ulcers without clinical signs of infection. Repeated culture using a validated standardised microbiological technique; Acta Dermatol Venereol. 1995; 75, 24–30. Medline, Google Scholar25 Robson, M. Infection in the surgical patient: an imbalance in the normal equilibrium. Clin Plast Surg. 1979; 6: 493–503. Medline, Google Scholar26 Heinzelmann, M., Scott, M., Lam, T. Factors predisposing to bacterial invasion and infection. Am J Surg. 2002; 183: 179–190. Crossref, Medline, Google Scholar27 Cooper, R. EWMA Position Document: Understanding Wound Infection. EWMA, 2005. Google Scholar28 Bowler, P.G., Duerden, B.I., Armstrong, D.G. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001; 14: 244–269. Crossref, Medline, Google Scholar29 Howell-Jones, R.S., Wilson, M.J., Hill, K.E. et al.. A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J Antimicrob Chemother. 2005; 55: 143–149. Crossref, Medline, Google Scholar30 Gilchrist, B., Reed, C. The bacteriology of chronic venous ulcers treated with occlusive hydrocolloid dressings. Br J Dermatol. 1989; 121: 337–344. Crossref, Medline, Google Scholar31 Bendy, R.H., Jnr, Nuccio, P.A., Wolfe, E. et al.. Relationship of quantitative wound bacterial counts to healing of decubiti: effect of topical gentamicin. Antimicrob Agents Chemother (Bethesda). 1964; 10, 147–155. Medline, Google Scholar32 Pruitt, B.A. Jnr. The diagnosis and treatment of infection in the burn patient. Burns Incl Therm Inj. 1984; 11: 2, 79–91. Crossref, Medline, Google Scholar33 Robson, M.C., Lea, C.E., Dalton, J.B., Heggers, J.P. Quantitative bacteriology and delayed wound closure. Surg Forum. 1968; 19: 501–502. Medline, Google Scholar34 Edmonds, M., Foster, A. The use of antibiotics in the diabetic foot. Am J Surg. 2004; 187: 5A (Suppl.), 25S–28S. Crossref, Medline, Google Scholar35 Gardner, S.E., Frantz, R.A. Wound bioburden and infection-related complications in diabetic foot ulcers. Biol Res Nurs. 2008; 10: 44–53. Crossref, Medline, Google Scholar36 Chantelau, E., Tanudjaja, T., Altenhofer, F. et al.. Antibiotic treatment for uncomplicated neuropathic forefoot ulcers in diabetes: a controlled trial. Diabetes Med. 1996; 13: 156–159. Crossref, Medline, Google Scholar37 Sotto, A., Richard, J.L., Combescure, C. et al.. Beneficial effects of implementing guidelines on microbiology and costs of infected diabetic foot ulcers. Diabetologia. 2010; 53: 2249–2255. Crossref, Medline, Google Scholar38 Baxter, C., Mertz, P.M. Local factors that affect wound healing. Nurs RSA. 1992; 7: 2, 16–23. Medline, Google Scholar39 Gilchrist, B. Treating bacterial wound infection. Nurs Times. 1994; 90: 50, 55–58. Medline, Google Scholar40 Hutchinson, J.J., McGuckin, M. Occlusive dressings: a microbiologic and clinical review. Am J Infect Control. 1990; 18: 257–268. Crossref, Medline, Google Scholar41 Geesey, G.G., Richardson, W.T., Yeomans, H.G. et al.. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol. 1977; 23: 1733–1736. Crossref, Medline, Google Scholar42 Høiby, N. Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Acta Pathol Microbiol Scand Suppl. 1977; 262: 1–96. Medline, Google Scholar43 McCoy, W.F., Bryers, J.D., Robbins, J., Costerton, J.W. Observations of fouling biofilm formation. Can J Microbiol. 1981; 27: 910–917. Crossref, Medline, Google Scholar44 Elek, S.D. Experimental staphylococcal infections in the skin of man. Ann NY Acad Sci. 1956; 65: 3, 85–90. Crossref, Medline, Google Scholar45 Lyman, I.R., Tenery, J.H., Basson, R.P. Correlation between decrease in bacterial load and rate of wound healing. Surg Gynecol Obstet. 1970; 130: 616–621. Medline, Google Scholar46 Bendy, R.H. Jnr, Nuccio, P.A., Wolfe, E. et al.. Relationship of quantitative wound bacterial counts to healing of decubiti: effect of topical gentamicin. Antimicrobial Agents Chemother (Bethesda). 1964; 10: 147–155. Medline, Google Scholar47 Gristina, A.G., Price, J.L., Hobgood, C.D. et al.. Bacterial colonization of percutaneous sutures; Surgery; 1985; 98:1, 12–19. Medline, Google Scholar48 Akiyama, H., Huh, W.K., Yamasaki, O. et al.. Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in mouse skin: does S. aureus generally produce a biofilm on damaged skin? Br J Dermatol. 2002; 147: 879–885. Crossref, Medline, Google Scholar49 Akiyama, H., Torigoe, R., Arata, J. Interaction of Staphylococcus aureus cells and silk threads in vitro and in mouse skin. J Dermatol Sci. 1993; 6: 247–257. Crossref, Medline, Google Scholar50 Akiyama, H., Kanzaki, H., Abe, Y. et al.. Staphylococcus aureus infection on experimental croton oil-inflamed skin in mice. J Dermatol Sci. 1994; 8: 1, 1–10. Crossref, Medline, Google Scholar51 Schierle, C.F., De la Garza, M., Mustoe, T.A., Galiano, R.D. Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen. 2009; 17: 354–359. Crossref, Medline, Google Scholar52 Bjarnsholt, T., Kirketerp-Moller, K., Jensen, P.O. et al.. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen. 2008; 16: 2–10. Crossref, Medline, Google Scholar53 Davis, S.C., Ricotti, C., Cazzaniga, A. et al.. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen. 2008; 16: 23–29. Crossref, Medline, Google Scholar54 James, G.A., Swogger, E., Wolcott, R. et al.. Biofilms in chronic wounds. Wound Repair Regen. 2008; 16: 37–44. Crossref, Medline, Google Scholar55 Burmolle, M., Thomsen, T.R., Fazli, M. et al.. Biofilms in chronic infections—a matter of opportunity—monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol. 2010; 59: 324–336. Crossref, Medline, Google Scholar56 Bjarnsholt, T., Jensen, P.O., Burmolle, M. et al.. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology. 2005; 151: (Pt 2), 373–383. Crossref, Medline, Google Scholar57 Alhede, M., Kragh, K.N., Qvortrup, K. et al.. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS.One. 2011; 6: 11, e27943. Crossref, Medline, Google Scholar58 Alipour, M., Suntres, Z.E., Omri, A. Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother. 2009; 64: 317–325. Crossref, Medline, Google Scholar59 Overview and general considerations. In: Clark, R.A.F. (ed). The Molecular and Cellular Biology of Wound Repair (2nd edn). Plenum Press, 1996. Google Scholar60 Gjodsbol, K., Christensen, J.J., Karlsmark, T. et al.. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J. 2006; 3: 225–231. Crossref, Medline, Google Scholar61 Madsen, S.M., Westh, H., Danielsen, L., Rosdahl, V.T. Bacterial colonization and healing of venous leg ulcers. APMIS. 1996; 104: 895–899. Crossref, Medline, Google Scholar62 Halbert, A.R., Stacey, M.C., Rohr, J.B., Jopp-McKay, A. The effect of bacterial colonization on venous ulcer healing. Australas J Dermatol. 1992; 33: 2, 75–80. Crossref, Medline, Google Scholar63 Fazli, M., Bjarnsholt, T., Kirketerp-Moller, K. et al.. Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Repair Regen. 2011; 19: 387–391. Crossref, Medline, Google Scholar64 Jensen, P.O., Bjarnsholt, T., Phipps, R. et al.. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology. 2007; 153: (Pt 5), 1329–1338. Crossref, Medline, Google Scholar65 Hogsberg, T., Bjarnsholt, T., Thomsen, J.S., Kirketerp-Moller, K. Success rate of split-thickness skin grafting of chronic venous leg ulcers depends on the presence of Pseudomonas aeruginosa: a retrospective study. PLoS.One. 2011; 6: 5, e20492. Crossref, Medline, Google Scholar66 Gardner, S.E., Hillis, S.L., Heilmann, K. et al.. The neuropathic diabetic foot ulcer microbiome is associated with clinical factors. Diabetes. 2013; 62: 923–930. Crossref, Medline, Google Scholar67 Krizek, T., Robson, M., Kho, E. Bacterial growth and skin graft survival. Surg Forum. 1967; 18: 518–519. Google Scholar68 Liedburg, N.C.F., Reiss, E., Artz, C.P. The effects of bacteria on the take of split-thickness skin grafts in rabbits. Ann Surg. 1955; 142: 92–96. Crossref, Medline, Google Scholar69 Robson, M.C., Lea, C.E., Dalton, J.B., Heggars, J.P. Quantitative bacteriology and delayed wound closure. Surg Forum. 1968; 19: 501–502. Medline, Google Scholar70 Robson, M.C., Heggars, J.P. Bacterial quantification of open wounds. Mil Med. 1969; 134: 19–24. Crossref, Medline, Google Scholar71 Murphy, R.C., Robson, M.C., Heggars, J.P., Kadowaki, M. The effect of microbial contamination on musculocutaneous and random flaps. J Surg Res. 1968; 41, 75–80. Google Scholar72 Heggars, J., Robson, M., Doran, E. The quantitative assessment of bacterial contamination of open wounds by a slide technique. Trans R Soc Trop Med Hyg. 1969; 63: 532–534. Crossref, Medline, Google Scholar73 Bornside, G., Bornside, B. Comparison between moist swab and tissue biopsy methods for quantification of bacteria in experimental incisional wounds. J Trauma. 1979; 19: 103–105. Crossref, Medline, Google Scholar74 Pruitt, B. The diagnosis and treatment of infection in the burned patient. Burns. 1984; 11: 79–81. Crossref, Google Scholar75 Schneider, M., Vildozola, C.W., Brooks, S. Quantutative assessment of bacterial invasion of chronic ulcers. Am J Surg. 1983; 145: 260–262. Crossref, Medline, Google Scholar76 Pruitt, B.A. Jnr, McManus, A.T., Kim, S.H., Goodwin, C.W. Burn wound infections: current status. World J Surg. 1998; 22: 135–145. Crossref, Medline, Google Scholar77 Bowler, P.G. The 10(5) bacterial growth guideline: reassessing its clinical relevance in wound healing. Ostomy Wound Manage. 2003; 49: 1, 44–53. Medline, Google Scholar78 Thomsen, T., Aasholm, M., Rudkjøbing, V. et al.. The bacteriology of chronic venous leg ulcer examined by culture-independent molecular methods. Wound Repair Regen. 2010; 18: 38–49. Crossref, Medline, Google Scholar79 Fazli, M., Bjarnsholt, T., Kirketerp-Møller, K. et al.. Non-random distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol. 2009; 47: 4084–4089. Crossref, Medline, Google Scholar80 Kirketerp-Møller, K., Madsen, K., Jensen, P. et al.. The distribution, organization and ecology of bacteria in chronic wounds. J Clin Microbiol. 2008; 46: 2717–2722. Crossref, Medline, Google Scholar81 Carrel, A. Cicatrization of wounds: XII. Factors initiating regeneration. J Exp Med. 1921; 34: 425–434. Crossref, Medline, Google Scholar82 Botsford, T. The tensile strength of sutured skin wounds during healing. Surg Gynecol Obstet. 1941; 72: 690–697. Google Scholar83 Tenorio, A., Jindrak, K., Weiner, M. et al.. Accelerated healing in infected wounds. Surg Gynecol Obstet. 1976; 142, 537–543. Medline, Google Scholar84 Raju, D., Jindrak, K., Weiner, M., Enquist, I. A study of the critical bacterial inoculum to cause a stimulus to wound healing. Surg Gynecol Obstet. 1977; 144: 347–350. Medline, Google Scholar85 Bowler, P.G., Davies, B.J. The microbiology of infected and noninfected leg ulcers. Int J Dermatol. 1999; 38: 573–578. Crossref, Medline, Google Scholar86 Daltrey, D.C., Rhodes, B., Chattwood, J.G. Investigation into the microbial flora of healing and non-healing decubitus ulcers. J Clin Pathol. 1981; 34: 701–705. Crossref, Medline, Google Scholar87 Rotstein, O.D., Pruett, T.L., Simmons, R.L. Mechanisms of microbial synergy in polymicrobial surgical infections. Rev Infect Dis. 1985; 7: 151–170. Crossref, Medline, Google Scholar88 Trengove, N.J., Stacey, M.C., McGechie, D.F., Mata, S. Qualitative bacteriology and leg ulcer healing. J Wound Care. 1996; 5: 277–280. Link, Google Scholar89 Moore, K., Hall, V., Paull, A. et al.. Surface bacteriology of venous leg ulcers and healing outcome. J Clin Pathol. 2010; 63: 830–834. Crossref, Medline, Google Scholar90 Dowd, S.E., Wolcott, R.D., Kennedy, J. et al.. Molecular diagnostics and personalised medicine in wound care: assessment of outcomes. J Wound Care. 2011; 20: 232–234. Link, Google Scholar91 Sotto, A., Richard, J.L., Messad, N. et al.. Distinguishing colonization from infection with Staphylococcus aureus in diabetic foot ulcers with miniaturized oligonucleotide arrays: a French multicenter study. Diabetes Care. 2012; 35: 617–623. Crossref, Medline, Google Scholar92 White, R.J., Cutting, K.F. Critical colonization—the concept under scrutiny. Ostomy Wound Manage. 2006; 52: 11, 50–56. Google Scholar93 Dissemond, J., Assadian, O., Gerber, V. et al.. Classification of wounds at risk and their antimicrobial treatment with polihexanide: a practice-oriented expert recommendation. Skin Pharmacol Physiol. 2011; 24: 245–255. Crossref, Medline, Google Scholar94 Kingsley, A. A proactive approach to wound infection. Nurs Stand. 2001; 15: 30, 50–58. Crossref, Google Scholar95 Gardner, S.E., Frantz, R.A., Troia, C. et al.. A tool to assess clinical signs and symptoms of localized infection in chronic wounds: development and reliability. Ostomy Wound Manage. 2001; 47: 1, 40–47. Google Scholar96 Cutting, K., Harding, K. Criteria for identifying wound infection. J Wound Care. 1994; 3: 198–201. Link, Google Scholar97 Edmonds, M., Foster, A. The use of antibiotics in the diabetic foot. Am J Surg. 2004; 187, 25–28. Crossref, Medline, Google Scholar98 Robson, M. Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am. 1997; 77, 637–650. Crossref, Medline, Google Scholar99 Gardner, S.E., Frantz, R.A. Wound bioburden and infection-related complications in diabetic foot ulcers. Biol Res Nurs. 2008; 10, 44–53. Crossref, Medline, Google Scholar100 Sibbald, R.G., Woo, K., Ayello, E.A. Increased bacterial burden and infection: the story of NERDS and STONES. Adv Skin Wound Care. 2006; 19: 447–461. Crossref, Medline, Google Scholar101 Woo, K., Sibbald, R. A cross-sectional study of using NERDS and STONES to assess bacterial burden; Ostomy Wound Manage. 2009; 55: 8, 40–48. Google Scholar102 Jørgensen, B., Bech-Thomsen, N., Grenow, B., Gottrup, F. Effect of a new silver dressings on chronic venous leg ulcers with signs of critical colonisation. J Wound care. 2006; 15: 97–100. Link, Google Scholar103 Brown, T.S., Hawksworth, J.S., Sheppard, F.R. et al.. Effect of a new silver dressings on chronic venous leg ulcers. Surg Infect (Larchmt). 2011; 12: 351–357. Crossref, Medline, Google Scholar104 Fazli, M., Bjarnsholt, T., Kirketerp-Moller, K. et al.. Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds; Wound Repair Regen. 2011; 19: 387–391. Crossref, Medline, Google Scholar105 Percival, S.L., Bowler, P.G. Biofilms and their potential role in wound healing. Wounds. 2004; 16: 7. Google Scholar106 Mertz, P.M. Cutaneous biofilms: friend or foe? Wounds. 2003; 15: 5. Google Scholar107 Stewart, P.S., Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet. 2001; 358: 9276, 135–138. Crossref, Google Scholar108 Wolcott, R.D., Rumbaugh, K.P., James, G. et al.. Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. J Wound Care. 2010; 19: 320–328. Link, Google Scholar109 Hill, K.E., Malic, S., McKee, R. et al.. An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities. J Antimicrob Chemother. 2010; 65: 1195–1206. Crossref, Medline, Google Scholar110 Grayson, L.M., Kucers, A., Crowe, S. et al.. Kucers' The Use of Antibiotics Sixth Edition: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs (6th edn). Edward Arnold, 2010. Google Scholar111 Suller, M.T., Russell, A.D. Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus. J.Hosp.Infect. 1999; 43: 281–291. Crossref, Medline, Google Scholar112 Stone, J.L. Induced resistance to bacitracin in cultures of Staphylococcus aureus. J Infect Dis. 1949; 85: 91–96. Crossref, Medline, Google Scholar113 Gezon, H.M., Fasan, D.M. Antigenic and enzyme systems in beat haemolytioc streptococci resistant to penicillin, streptomycin, bacitracin and aureomycin. J Clin Invest. 1949; 28: 886–890. Crossref, Medline, Google Scholar114 Lockwood, W.R., Lawson, L.A. Studies on the susceptibility of 150 consecutive clinical isolates of Pseudomonas aeruginosa to tobramycin, gentamicin, colistin, carbenicillin, and five other antimicrobials. Antimicrob Agents Chemother. 1973; 4: 281–284. Crossref, Medline, Google Scholar115 Brown, R.L., Evans, J.B. Comparative physiology of antibiotic-resistant strains of Staphylococcus aureus. J Bacteriol. 1963; 85, 1409–1412. Medline, Google Scholar116 Apirion, D., Schlessinger, D. Coresistance to neomycin and kanamycin by mutations in an Escherichia coli locus that affects ribosomes. J Bacteriol. 1968; 96: 768–776. Medline, Google Scholar117 Doi, O., Ogura, M., Tanaka, N., Umezawa, H. Inactivation of kanamycin, neomycin, and streptomycin by enzymes obtained in cells of Pseudomonas aeruginoa. Appl Microbiol. 1968; 16: 1276–1281. Medline, Google Scholar118 Porthouse, A., Brown, D.F., Smith, R.G., Rogers, T. Gentamicin resistance in Staphylococcus aureus. Lancet. 1976; 1: 7949, 20–21. Google Scholar119 Horodniceanu, T., Bougueleret, L., El-Solh, N. et al.. High-level, plasmid-borne resistance to gentamicin in Streptococcus faecalis subspecies zymogenes. Antimicrob Agents Chemother. 1979; 16: 686–689. Crossref, Medline, Google Scholar120 Dick, J.D., Merz, W.G., Saral, R. Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrob Agents Chemother. 1980; 18: 158–163. Crossref, Medline, Google Scholar121 Jelenko, C. 3rd. Silver nitrate resistant E. coli: report of case. Ann Surg. 1969; 170: 296–299. Crossref, Medline, Google Scholar122 Annear, D.I., Mee, B.J., Bailey, M. Instability and linkage of silver resistance, lactose fermentation, and colony structure in Enterobacter cloacae from burn wounds. J Clin Pathol. 1976; 29: 441–443. Crossref, Medline, Google Scholar123 Bridges, K., Kidson, A., Lowbury, E.J., Wilkins, M.D. Gentamicin- and silver-resistant Pseudomonas in a burns unit. BMJ. 1979; 1: 6161, 446–449. Crossref, Google Scholar124 Deshpande, L.M., Chopade, B.A. Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals. 1994; 7: 49–56. Crossref, Medline, Google Scholar125 Bjarnsholt, T., Kirketerp-Moller, K., Kristiansen, S. et al.. Silver against Pseudomonas aeruginosa biofilms. APMIS. 2007; 115: 921–928. Crossref, Medline, Google Scholar126 Bowler, P.G., Welsby, S., Towers, V. et al.. Multidrug-resistant organisms, wounds and topical antimicrobial protection. Int Wound J. 2012; 9: 387–396. Crossref, Medline, Google Scholar127 Lam, P.K., Chan, E.S., Ho, W.S., Liew, C.T. In vitro cytotoxicity testing of a nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Br J Biomed Sci. 2004; 61: 125–127. Crossref, Medline, Google Scholar128 Burd, A., Kwok, C.H., Hung, S.C. et al.. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen. 2007; 15: 94–104. Crossref, Medline, Google Scholar129 Zou, S.B., Yoon, W.Y., Han, S.K. et al.. Cytotoxicity of silver dressings on diabetic fibroblasts. Int Wound J. 2012; doi: https://doi.org/10.1111/j.1742-481X.2012.00977.x. Medline, Google Scholar130 Muller, G., Kramer, A. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J.Antimicrob. Chemother. 2008; 61: 1281–1287. Crossref, Medline, Google Scholar131 Lansdown, A.B. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharmacol Sci. 2010; 2010, 910686. Medline, Google Scholar132 Alandejani, T., Marsan, J., Ferris, W. et al.. Effectiveness of honey on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Otolaryngol Head Neck Surg 2009; 141: 114–118. Crossref, Medline, Google Scholar133 Merckoll, P., Jonassen, T.O., Vad, M.E. et al.. Bacteria, biofilm and honey: a study of the effects of honey on ‘planktonic’ and biofilm-embedded chronic wound bacteria. Scand J Infect Dis. 2009; 41: 341–347. Crossref, Medline, Google Scholar134 Ueda, S., Kuwabara, Y. Susceptibility of biofilm Escherichia coli, Salmonella enteritidis and Staphylococcus aureus to detergents and sanitizers Biocontrol Sci. 2007; 12: 149–153. Crossref, Medline, Google Scholar135 Lee, D., Howlett, J., Pratten, J. et al.. Susceptibility of MRSA biofilms to denture-cleansing agents; FEMS Microbiol Lett. 2009; 291: 241–246. Crossref, Medline, Google Scholar136 Tote, K., Horemans, T., Vanden Berghe, D. et al.. Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 2010; 76: 3135–3142. Crossref, Medline, Google Scholar137 Silva, R.C., Carver, R.A., Ojano-Dirain, C.P., Antonelli, P.J. Efficacy of disinfecting solutions in removing biofilms from polyvinyl chloride tracheostomy tubes. Laryngoscope. 2013; 123: 259–263. Crossref, Medline, Google Scholar138 Cooper, R.A. Iodine revisited. Int Wound J. 2007; 4: 124–137. Crossref, Medline, Google Scholar139 Presterl, E., Suchomel, M., Eder, M. et al.. Effects of alcohols, povidoneiodine and hydrogen peroxide on biofilms of Staphylococcus epidermidis. J Antimicrob Chemother. 2007; 60: 417–420. Crossref, Medline, Google Scholar140 Morikawa, H., Mima, H., Fujita, H., Mishima, S. Oxygen embolism due to hydrogen peroxide irrigation during cervical spinal surgery. Can J Anaesth. 1995; 42: 231–233. Crossref, Medline, Google Scholar141 Chaplin, C.E. Observations on quaternary ammonium disinfectants. Can J Botany. 1951; 29: 373–382. Crossref, Google Scholar142 Chaplin, C.E. Bacterial resistance to quaternary ammonium disinfectants. J Bacteriol. 1952; 63: 453–458. Medline, Google Scholar143 Russell, A.D., Mills, A.P. Comparative sensitivity and resistance of some strains of Pseudomonas aeruginosa and Pseudomonas stutzeri to antibacterial agents. J Clin Pathol. 1974; 27: 463–466. Crossref, Medline, Google Scholar144 Muller, G., Kramer, A. Comparative study of in vitro cytotoxicity of povidone-iodine in solution, in ointment or in a liposomal formulation (Repithel) and selected antiseptics. Dermatology. 2006; 212: (Suppl. 1), 91–93. Crossref, Medline, Google Scholar145 Uter, W., Lessmann, H., Geier, J., Schnuch, A. Is the irritant benzalkonium chloride a contact allergen? A contribution to the ongoing debate from a clinical perspective. Contact Dermatitis. 2008; 58: 359–363. Crossref, Medline, Google Scholar146 Gillespie, W.A., Lennon, G.G., Linton, K.B., Phippen, G.A. Prevention of urinary infection by means of closed drainage into a sterile plastic bag. BMJ. 1967; 3, 90–92. Crossref, Medline, Google Scholar147 Davies, A., Roberts, W. The cell wall of a chlorhexidine-resistant Pseudomonas. Biochem J. 1969; 112: 1, 15P. Crossref, Google Scholar148 Kaatz, G.W., McAleese, F., Seo, S.M. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother. 2005; 49: 1857–1864. Crossref, Medline, Google Scholar149 Lepainteur, M., Royer, G., Bourrel, A.S. et al.. Prevalence of resistance to antiseptics and mupirocin among invasive coagulase-negative staphylococci from very preterm neonates in NICU: the creeping threat? J Hosp Infect. 2013; 83: 333–336. Crossref, Medline, Google Scholar150 Hubner, N.O., Matthes, R., Koban, I. et al.. Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol. 2010; 23: (Suppl.), 28–34. Crossref, Medline, Google Scholar151 MHRA; Medical Device Alert, 2012; Available from: http://bit.ly/SA7IOJ [Accessed May 2013]. Google Scholar152 Steen, M. Review of the use of povidone-iodine (PVP-I) in the treatment of burns. Postgrad Med J. 1993; 69: (Suppl. 3), S84–92. Medline, Google Scholar153 Akiyama, H., Oono, T., Saito, M., Iwatsuki, K. Assessment of cadexomer iodine against Staphylococcus aureus biofilm in vivo and in vitro using confocal laser scanning microscopy. J Dermatol. 2004; 31: 529–534. Crossref, Medline, Google Scholar154 Zhou, L.H., Nahm, W.K., Badiavas, E. et al.. Slow release iodine preparation and wound healing:
Referência(s)