Artigo Produção Nacional Revisado por pares

New Generalized Unified Solution Method for Thin Laminated Plates

2016; American Institute of Aeronautics and Astronautics; Volume: 54; Issue: 8 Linguagem: Inglês

10.2514/1.j054771

ISSN

1533-385X

Autores

Mauricio F. Caliri, Volnei Tita, A.J.M. Ferreira,

Tópico(s)

Structural Analysis and Optimization

Resumo

No AccessTechnical NoteNew Generalized Unified Solution Method for Thin Laminated PlatesMauricio Francisco Caliri Jr., Volnei Tita and Antonio Joaquim Mendes FerreiraMauricio Francisco Caliri Jr.University of São Paulo, São Carlos, SP, Brazil*Postdoctoral Student, São Carlos School of Engineering, Department of Aeronautical Engineering, Av. João Dagnone, 1100; .Search for more papers by this author, Volnei TitaUniversity of São Paulo, São Carlos, SP, Brazil†Associate Professor, Sao Carlos School of Engineering, Department of Aeronautical Engineering, Av. João Dagnone, 1100; .Search for more papers by this author and Antonio Joaquim Mendes FerreiraUniversity of Porto, Rua Dr Roberto Frias, Porto, Portugal‡Cathedratic Professor, Faculty of Engineering, Mechanical Engineering Department; .Search for more papers by this authorPublished Online:25 May 2016https://doi.org/10.2514/1.J054771SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Carrera E., “Theories and Finite Elements for Multilayered Anisotropic, Composite Plates and Shells,” Archives of Computational Methods in Engineering, Vol. 9, No. 2, 2002, pp. 87–140. doi:https://doi.org/10.1007/BF02736649 CrossrefGoogle Scholar[2] Carrera E., “Theories and Finite Elements for Multilayered Anisotropic, Composite Plates and Shells: A Unified Compact Formulation with Numerical Assessment and Benchmarking,” Archives of Computational Methods in Engineering, Vol. 10, No. 3, 2003, pp. 215–296. doi:https://doi.org/10.1007/BF02736224 CrossrefGoogle Scholar[3] Carrera E. and Demasi L., “Classical and Advanced Multilayered Plate Elements Based Upon PVD and RMVT. Part1: Derivation of Finite Element Matrices,” International Journal for Numeric Methods in Engineering, Vol. 55, No. 2, 2002, pp. 191–231. doi:https://doi.org/10.1002/(ISSN)1097-0207 CrossrefGoogle Scholar[4] Carrera E. and Demasi L., “Classical and Advanced Multilayered Plate Elements Based Upon PVD and RMVT. Part 2: Numerical Implementations,” International Journal for Numeric Methods in Engineering, Vol. 55, No. 3, 2002, pp. 253–291. doi:https://doi.org/10.1002/(ISSN)1097-0207 CrossrefGoogle Scholar[5] Demasi L., “Treatment of Stress Variables in Advanced Multilayered Plate Elements Based Upon Reissner’s Mixed Variational Theorem,” Computers and Structures, Vol. 84, Nos. 19–20, 2006, pp. 1215–1221. doi;https://doi.org/10.1016/j.compstruc.2006.01.036 CrossrefGoogle Scholar[6] Demasi L., “Hierarchy Plate Theories for Thick and Thin Composite Plates: The Generalized Unified Formulation,” Composite Structures, Vol. 84, No. 3, 2008, pp. 256–270. doi:https://doi.org/10.1016/j.compstruct.2007.08.004 CrossrefGoogle Scholar[7] Demasi L., “An Invariant Model for Any Composite Plate Theory and FEM Applications: The Generalized Unified Formulation,” 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2009-2342, May 2009. LinkGoogle Scholar[8] Demasi L., “Mixed Plate Theories Based on the Generalized Unified Formulation. Part I: Governing Equations,” Composite Structures, Vol. 87, No. 1, 2009, pp. 1–11. doi:https://doi.org/10.1016/j.compstruct.2008.07.013 CrossrefGoogle Scholar[9] Demasi L., “Mixed Plate Theories Based on the Generalized Unified Formulation. Part II: Layerwise Theories,” Composite Structures, Vol. 87, No. 1, 2009, pp. 12–22. doi:https://doi.org/10.1016/j.compstruct.2008.07.012 CrossrefGoogle Scholar[10] Demasi L., “Mixed Plate Theories Based on the Generalized Unified Formulation. Part III: Advanced Mixed High Order Shear Deformation Theories,” Composite Structures, Vol. 87, No. 3, 2009, pp. 183–194. doi:https://doi.org/10.1016/j.compstruct.2008.07.011 CrossrefGoogle Scholar[11] Demasi L., “Mixed Plate Theories Based on the Generalized Unified Formulation. Part IV: Zig-Zag Theories,” Composite Structures, Vol. 87, No. 3, 2009, pp. 195–205. doi:https://doi.org/10.1016/j.compstruct.2008.07.010 CrossrefGoogle Scholar[12] Demasi L., “Mixed Plate Theories Based on the Generalized Unified Formulation. Part V: Results,” Composite Structures, Vol. 88, No. 1, 2009, pp. 1–16. doi:https://doi.org/10.1016/j.compstruct.2008.07.009 CrossrefGoogle Scholar[13] Demasi L., “Partially Zig-Zag Advanced Higher Order Shear Deformation Theories Based on the Generalized Unified Formulation,” Composite Structures, Vol. 94, No. 2, 2012, pp. 363–375. doi:https://doi.org/10.1016/j.compstruct.2011.07.022 CrossrefGoogle Scholar[14] Ferreira A. J. M., Araujo A. L., Neves A. M. A., Rodrigues J. D. E., Carrera E., Cinefra M. and Soares C. M. M., “A Finite Element Model Using a Unified Formulation for the Analysis of Viscoelastic Sandwich Laminates,” Composites: Part B, Vol. 45, No. 1, 2013, pp. 1258–1264. doi:https://doi.org/10.1016/j.compositesb.2012.05.012 CrossrefGoogle Scholar[15] Di Sciuva M., “Development of an Anisotropic, Multilayered, Shear-Deformable Rectangular Plate Element,” Computers and Structures, Vol. 21, No. 4, 1985, pp. 789–796. doi:https://doi.org/10.1016/0045-7949(85)90155-5 CrossrefGoogle Scholar[16] Reddy J. N., “A General Non-Linear Third-Order Theory of Plates with Moderate Thickness,” International Journal of Non-Linear Mechanics, Vol. 25, No. 6, 1990, pp. 667–686. CrossrefGoogle Scholar[17] Lekhnitskii S. G., Anisotropic Plates, Gordon and Breach, Science Publishers, New York, 1968, pp. 1–55. Google Scholar[18] Timoshenko S. and Krieger S. W., Theories of Plates and Shells, 2nd ed., McGraw–Hill, New York, 1959, pp. 180–207. Google Scholar[19] Hartman T. B., Hyer M. W. and Case S. W., “Stress Recovery in Composite Laminates Including Geometrically Nonlinear and Dynamic Effects,” AIAA Journal (in press). Google Scholar Previous article

Referência(s)
Altmetric
PlumX