Thapsigargin inhibits the glucose-induced decrease of intracellular Ca2+ in mouse islets of Langerhans
1994; American Physiological Society; Volume: 266; Issue: 6 Linguagem: Inglês
10.1152/ajpendo.1994.266.6.e852
ISSN1522-1555
AutoresMichael W. Roe, Robert J. Mertz, Mary E. Lancaster, Jennings F. Worley, Iain Dukes,
Tópico(s)Glycogen Storage Diseases and Myoclonus
ResumoStimulation of pancreatic islets of Langerhans with glucose results in changes in intracellular Ca2+ concentration ([Ca2+]i). With the use of mouse islets loaded with fura 2, the earliest glucose-induced alteration of [Ca2+]i was a pronounced decline in [Ca2+]i. This effect (phase 0) was evident 1 min after increasing extracellular glucose from 2 to 12 mM and was sustained for 3-5 min. Phase 0 was also observed when glucose was increased from 5 to 12 mM, indicating that it was not an experimental artifact resulting from substrate depletion. The [Ca2+]i-lowering effect of glucose was mimicked by D-glyceraldehyde but not by 2-deoxyglucose, pyruvate, glyburide, or 30 mM extracellular KCl. Mannoheptulose inhibited phase 0, whereas diazoxide, sodium azide, calmidazolium, or increasing extracellular [Ca2+] to 10 mM were all without effect. After the elevation of islet [Ca2+]i with 5 microM glyburide, 12 mM glucose caused a considerable transient decrease in [Ca2+]i. Under similar conditions, 5 mM caffeine attenuated phase 0, whereas 1 microM thapsigargin, a specific inhibitor of the sarcoplasmic and endoplasmic reticulum family of Ca(2+)-adenosinetriphosphatases (SERCA), almost completely inhibited any glucose-induced reduction of [Ca2+]i. These observations suggest that glucose causes an elevation of beta-cell SERCA activity triggered by factors generated during the cytosolic stages of glycolysis.
Referência(s)