[Changes in platelet concentrates from dogs due to storage. II. Biochemical changes in concentrate plasma].
1999; National Institutes of Health; Volume: 112; Issue: 8 Linguagem: Inglês
Autores
Annette M. Klein, A. Adamik, Reinhard Mischke,
Tópico(s)Trauma, Hemostasis, Coagulopathy, Resuscitation
ResumoPlatelet concentrate (PC) obtained from dogs with an automatic cell separator was stored in C4-cell separation sets with low gasdiffusionable Polyvinylchlorid (PVC) storage containers or in C4L-sets developed for storage with high gasdiffusionable Polyolefin(PO) containers, respectively. PC were stored for 10 days under permanent agitation at 22 degrees C (C4/22 degrees C, n = 10; C4L/22 degrees C, n = 11) or at 4 degrees C (C4L/4 degrees C, n = 6), respectively. Measurements were carried out directly after production of the PC, after 6 hours and then daily during the 10-day storage period. In the second part of this paper the results of pH, the concentration of bicarbonate, glucose, lactate and potassium ions as well as the activity of lactate dehydrogenase (LDH) are presented. The varying duration and intensity of the energy metabolism of the platelets and different part of glycolysis became obvious by the consumption of glucose and production of lactate, which differed significantly between the different storage conditions. Resulting from this, the mean pH decreased under the limit prescribed for human PC (pH = 6.3) already after a storage period of 3 days due to the slight capacity of gas diffusion in PVC-containers (C4/22 degrees C). In the PO-containers the pH fell below this limit at 22 degrees C (C4L/22 degrees C) after a storage period of 5 days and at 4 degrees C (C4L/4 degrees C) after 10 days. The latter reflects the high gas diffusion capacity of the PO-containers and the decreased metabolism activity at 4 degrees C. The increase of activity of LDH and of the concentration of potassium ions, which are localized in the cytosol of platelets, depended also on the different storage conditions and, thereby, reflected the different rapidity of increasing membrane permeability or the destruction of the cell membrane, respectively. The results of this study nearly are in agreement with the changes of platelet function shown in part I. Biochemical changes occur in canine platelet concentrates similar to those in human platelet concentrates during storage in dependency of the storage conditions, in part even with a higher rate or in a higher extent.
Referência(s)