Artigo Revisado por pares

SIMPLE JOINT INVERSION LOCALIZED FORMULAE FOR RELAXATION SPECTRUM RECOVERY

2016; Cambridge University Press; Volume: 58; Issue: 1 Linguagem: Inglês

10.1017/s1446181116000122

ISSN

1446-8735

Autores

Robert Anderssen, A.R. Davies, F. R. de Hoog, R. J. Loy,

Tópico(s)

Material Dynamics and Properties

Resumo

In oscillatory shear experiments, the values of the storage and loss moduli, $G^{\prime }(\unicode[STIX]{x1D714})$ and $G^{\prime \prime }(\unicode[STIX]{x1D714})$ , respectively, are only measured and recorded for a number of values of the frequency $\unicode[STIX]{x1D714}$ in some well-defined finite range $[\unicode[STIX]{x1D714}_{\text{min}},\unicode[STIX]{x1D714}_{\text{max}}]$ . In many practical situations, when the range $[\unicode[STIX]{x1D714}_{\text{min}},\unicode[STIX]{x1D714}_{\text{max}}]$ is sufficiently large, information about the associated polymer dynamics can be assessed by simply comparing the interrelationship between the frequency dependence of $G^{\prime }(\unicode[STIX]{x1D714})$ and $G^{\prime \prime }(\unicode[STIX]{x1D714})$ . For other situations, the required rheological insight can only be obtained once explicit knowledge about the structure of the relaxation time spectrum $H(\unicode[STIX]{x1D70F})$ has been determined through the inversion of the measured storage and loss moduli $G^{\prime }(\unicode[STIX]{x1D714})$ and $G^{\prime \prime }(\unicode[STIX]{x1D714})$ . For the recovery of an approximation to $H(\unicode[STIX]{x1D70F})$ , in order to cope with the limited range $[\unicode[STIX]{x1D714}_{\text{min}},\unicode[STIX]{x1D714}_{\text{max}}]$ of the measurements, some form of localization algorithm is required. A popular strategy for achieving this is to assume that $H(\unicode[STIX]{x1D70F})$ has a separated discrete point mass (Dirac delta function) structure. However, this expedient overlooks the potential information contained in the structure of a possibly continuous $H(\unicode[STIX]{x1D70F})$ . In this paper, simple localization algorithms and, in particular, a joint inversion least squares procedure, are proposed for the rapid recovery of accurate approximations to continuous $H(\unicode[STIX]{x1D70F})$ from limited measurements of $G^{\prime }(\unicode[STIX]{x1D714})$ and $G^{\prime \prime }(\unicode[STIX]{x1D714})$ .

Referência(s)
Altmetric
PlumX