Artigo Acesso aberto Revisado por pares

De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data

2016; Elsevier BV; Volume: 19; Issue: 2 Linguagem: Inglês

10.1016/j.stem.2016.05.010

ISSN

1934-5909

Autores

Dominic Grün, Mauro J. Muraro, Jean-Charles Boisset, Kay Wiebrands, Anna Lyubimova, Gitanjali Dharmadhikari, Maaike van den Born, Johan H. van Es, Erik W.L. Jansen, Hans Clevers, Eelco J.P. de Koning, Alexander van Oudenaarden,

Tópico(s)

Pancreatic function and diabetes

Resumo

Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation.

Referência(s)